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l. General Remarks.

During the veriod November 1, 1981 to October 31, 1982, the
Principal Investigator, in cooperation with several research
assistants, carried out a vrogram of mathematical research in
the general area of control theory of partial differential eaqua-
tions. The program involved two distinct phases: an effort aimed
specifically at the develooment and improvement of control stras-
egies in connection with the wing flutter problem and a more
general program in the area of distributed parameter control prodb-
lems of hyperdbolic type.

This work resulted in two scientific papers which form the
greater part of this report. The first of these, "Some Remarks
on the Current Status of the Control Theory of Single Svace Dim-
ension Hyperbolic Systems"™ was presented at the NASA JPL Symposium
on Control and Stabiligation of Large Space Structures, Pasadensa,
CK, July, 1982. fThe second, "Admissible Input Elements for Systems
in Hilbert Space and a Carleson Measure Criterion", by L. F. Ho
and the Principal Investigator, is a paper which largely resulted
from Dr. Ho's thesis work, also supported by this grant, in part.

In addition to Dr. Ho, who is now with the University of Iowa,

the Principal Investigator was assisted by R.. G. Teglas, H. M.
Baron, and R. Rebarber..
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2.. Travel Suvported by the Grant.

Grant funds were used to support travel by the Principal
Investigator and one Research Assistant, H. M. Baron.

The Principal Investigator travelled to Pasadena, California,
to attend and present a paver at the NASA Jet Provulsion Laboratory
Symposium on Control and Stabilization of lLarge Space Structures.
The paver presented concerned the current status of the control
theory of hyperbolic partial differential equations with particular
emphasis on observers and canonical structure.

The Principal Investigator also took part in the 30th Anni-
versary meeting of the Society for Industrial and Applied Mathe-
matics (SIAM) in Palo Alto, Californmia, July, 1982. A paper out-
lining the treatment of control problems associated with infinite
dimensional linear systems ﬁy means of methods from the theory of
analytic functions was presented at this meeting by invitation of
the organizing committee.. Ms. Baron also attended this meeting
and presented a paper on control canonical forms for systems gov-

erned by various types of partial differential equations.
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3.. Technical Apvendix.

f% This apvendix consists of two papers whose preparation was
sunported in part by the grant. These napers are:

»Some Remarks on the Current Status of the Control Theory
of Single Svace Dimension Hyperbolic Systems”

SR e

®"Admissible Input Elements for Systems in Hilbert Svace
and a Carleson Measure Criterion"”,

the latter paper being jointly authored by L. F. Ho and the

Principal Investigator.




SOME REMARKS ON THE CURRENT STATUS OF THE CONTROL THEORY
OF SINGLE SPACE DIMENSION HYPERBOLIC SYSTEMS

D, L. Russell**

University of Wisconsin Mathematics Department

ABSTRACT

We review various aspects of the control theory of hyperbolic systems,
including controllability, stabilization, control canonical form theory, etc. To
allow a unified and not excessively technical treatment, we restrict attention
to the case of a single space variable; the multi-dimensional case is treated in
our more extensive review [36]. The paper concludes with a short discussion
of the newly developed procedure of canonical augmentation.

SOME ASPECTS OF THE CONTROL THEORY OF THE WAVE EQUATION
AND REIATED SYSTEMS

The systematic study of control systems governed by partial differential
equations, a special, but exceptionally important, subcategory of distributed
parameter systems began in the early 1960's with the work of the Soviet
scientists A, G. Butkovskii[3], [4],Yu. V. Egorov [11] and others. These
works were primarily concerned with the extension of Pontyagin's Maximum
Principle [26] to certain classes of processes which could not be satisfactorily
modelled by finite dimensional mathematical systems. Controllability questions
were raised but were usually subsidiary to questions of optimality. One of the
first systematic controllability studies, in connection with the heat equation,
was presented by Gal'chuk in [14] . One of the most important of the early
American contributions to the subject was the 1963 thesis of Fattorini [13],
which also treated parabolic systems and was one of the first works to
recognize the strong relationship between distributed parameter control studies

%*
Supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018.

**Dept. of Mathematics, University of Wisconsin, Madison, WI 53706, Also
Associated with Mathematics Research Center, University of Wisconsin, Madison,
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and classical results in analytic function theory.

The author's own interest in distributed parameter control theory arose
out of consulting experience with Honeywell, Inc., and NASA, starting around
1965 or 1966, In developing the Satum launch vehicle for the Apollo program,
NASA has encountered the problem of transverse vibrations of the booster
structure and interaction of those vibrations with liquid sloshing modes in the
immense Satum fuel tanks. While the eventual treatment of that problem was

- R
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- g R ':',

based on finite modal approximations, the problem stimulated a great deal of
research aimed at an understanding of the control of vibrations in various
distributed parameter settings,

First looking at this problem, under Honeywell-NASA auspices, we
¢ thought of modelling the booster structure as an ""Euler" beam, the displacement
w(x,t), which we may take to be scalar here, satisfying

2 2 %w
(1) %)= 0 .1
>3
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p (x)

along with ap'pro;iriate boundary conditions including the control inputs, at the
longitudinal extremities x=0, x= L. We got nowhere with our study of
this problem initially because the equation (1.1) is not particularly well
understood from the mathematical standpoint. There seemed to be no "handles"
to grasp. It would not be until the 1969 thesis of Quinn [ 27] that we would

' understand how this system works and that it is, in fact, controllable in a
rather strong sense.

We knew about the control theory of ordinary differential equations from
various papers and from notes and lectures which would later be incorporated
into the 1967 treatise on control theory by Lee and Markus [20] . We also
knew that hyperbolic partial differential equations in two independent variables
reduce to ordinary differential equations satisfied along the characteristics. It
was natural, therefore, to look for hyperbolic models which might fit our purpose,
Such was ptovided by the Timoshenko beam equatlons

I (x)—-gf- k) (2 ) - 2 (B0 2y = 0 (L2)
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P(x)éa—t%-%(k(x)(%—xb)) =0, (L 3)

- which may be viewed as two coupled wave equations. By ""wave equations"
here, we mean the equation B
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2
r(x)aTti-- g—x(S(X)—g;— =0. (1. 4)

All coefficient functions shown in (1.2), (1.3), (l.4) are positive on 0=<x=L,
It may be verified that (1.2), (1.3) and (l.4) are hyperbolic in the sense
described in [8], [25], e.g.. Since (1.4) is conceptually simpler, it was
studied first, with accompanying boundary conditions

z(o,t) = O (1.5)

92z -
e (Lt) = u(t), (L. 6)

the latter incorporating the control force u(t).
While the practical goal in mind was appropriate form of stabilization,
we knew that in the case of finite dimensional systems
x = Ax + Bu

an affirmative resolution of the controllability problem, steering from a given
x(0) = X9 toa given x(T) = X implied the property of stabilization; hence
we felt justified in first looking at the state to state controllability problem for
(1.4), (1.5), (1.6). The "energy" form for (1l.4) is

e(z.-g%)=‘3{)Lr(xu-°5%(x.t))z+s(x)(%§-(x.mzdx. LD

Given initial and terminal states
z(x,0) = zy(x), 2 (x,0) = yo(x) - 8
z(x,T) = z,(x), 3= (x,T) = y;(x) 1.9)

of finite energy, 1i.e. e(zo, vo) < =, e(zl, vl) fao, we asked if there
exists u e I.z[ 0,T] for which the solution of (1.4), (1.5), (1.6) correspond-
ing to the initial state (1.8) assumes the desired terminal state (1.9) at time
t=T. The answer, a qualified ""yes', came from two different approaches to
the problem. The relationship between these two approaches has, over the

years, grown ever more fundamental and has led to a great many very interesting
developments, See [34] and [45] in particular,

' The first method explored was, as we have already indicated, the method
of characteristics, If we let

cxr = JEET .10

and consider families X+, X

of "characteristic'" curves satisfying




L g + -
T dx - dx -
4§$ o +c(x) =0, -l c(x)=09, (1, 11)

respectively, and then set

vikt) =35 (xt) +olx) 32 (xt),

vi(x,t) = %-tz-(x.t) - c(x) aa—f‘ (x,t),
we see readily that on xt= ((x+(t),t)} , X = {(x-(t), t)}, respectively,

we have
+ -
L vHxtm), t) = ' (x+en ¥ (x2O.5) -V (2208 (12
+ -
H vi(x-), t) = o' (x- () ""‘t";’ =V (x-{th ) 3
i x=0 a, X"(L,1)
242/
3
t=T< 2T
1 Q

& X°@,T)

R1N Fig. 1.1: The Method of Characteristics
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Because these differential equations are satisfied on different families of
characteristics, the coupling between them is more complicated than for the
usual system of ordinary differential equations. Nevertheless there is a method
of successive approximations, described in [30], [36], which enables solution
of these equations in certain regions provided with appropriate boundary data.
Such a region is the roughly triangular domain 8 shown in Fig, 1.1, bounded
by t=0, x=0 andthe characteristic x+( 1,0), of the first family
described by (1.11), passing through the point (L, 0). Together with the
boundary data provided by (1.5) and (1.8), it may be seen that the differential
equations (1.12), (1.13) determine vt and v~, and hence 2z(x,t), through-
out the domain 4, . Similarly, these equations together with the data
provided by (1.5) and (L.9) determine 2z (x,t) inthe domain A, bounded
by x=0, t=T andthe characteristic curve X (L,T), described by the
second equation in (1.11) and passing through the point (L,T). Thus the
initial and terminal states, described by (1.8), (1.9), together with the
boundary condition (1.5) determine z(x,t) in both A, and Ay
Whether A 0 and a; are disjoint, or have a region, R
lap, depends on the time T allotted for control. The time required for the
curve X+(0, L) topassfrom X=L to x=0 I1is

L
dx
Tl = { 15 (1.14)
and this is also the time required for X (L,T) topassfrom x=0 to x= 1L,
We summarize the control situation, depending on the relationship between T

and 'rl.

of over-

CaseT < 2T. Here A, and A | overlap and the determinations of
2(x,t) in the overlap region Q4= A, Uy provided by (1.8) and (1.9) need
not and, in general, will not agree. - There can, in such cases of disagreement,
be no solution of (1.4), equivalently (1.12), (1.13), in the region
Rp = {(x,t)]0sx=<L 0st=T}. The control function u(t), shownin
(1. 6), never enters the picture because it cannot affect the solution of (1.4) in
Ag Or & if (1.8), (1.9) are satisfiedat t =0, t=T, respectively.

Case T = 2T, Here the two '"domains of determinacy'’, aq and Ay
just fail to overlap; their boundaries have exactly one point in common, t = Tl'
x = 0, The initial and terminal conditions (1.8) and (1.9) determine z(x,t)
in A, and A, respectively., Another process of integration of the coupled

0

~




PR
e .

FZTER
g b,

3

P il S o

FANS

oZ P .

W

£ G
ag iy J..~
T W NG

o ‘0_

g
F

O
e: '3 AP, e
¥ .- e

2y

7

ol 2 "l o

§

differential equations (1.12) and (l.13) permits unique extension of z(x,t),
equivalently v+(x,t), v (x,t), into the domain € . The control steering
(1. 8) to (1.9) is then uniquely determined from this extension and (1. 6).

The determinations of 2z(x,t) i{n 4, and Ay may fail to match
smoothly at the point p: x=0, t= 'J‘.‘l . This results in discontinuities of
vt along X+(L, 0) andof v along X (L,T) in general,.

Case T > 2T. The only difference between this case and the case
T= 21‘1 lies in the line segment t: x = 0, '1‘1<t<'1‘-'1‘1,
the point p ofthecase T = ZTI . Extension of z(x,t) from 8y 0] a,
into Q cannot be carmrried out until the boundary condition (l.5), which
ylelds 9z/5t (0,t) = 0, 1is augmented by arbitrary data

which replaces

22 (0,t) = g(t), (0,t)et. (L. 15)

Once this is done, extensionof z(x,t) into  proceeds much as before.
(See [30], [36] fordetails of the extension process.) The arbitrary
function t(t) can be designed so as to eliminate discontinuities of the
solution along X+( 1,0) and X (L,T), to satisfy some criterion of
optimality (see [30] e.g.) or to fulfill any other appropriate design objective.

If the partial differential equation (l.4) is combined with boundary
conditions different from (1.5), (l1.6), but still admissible for (l,4), the
cases T < 2'1‘1, T > 2']?1
at T = 2'1'1 depends on the speciﬁc form of the boundary conditions. For
example, the boundary conditions

z(0,t) =0, z(L,t)=u(t)

lead, incase T = 2’1‘1, to a situation where the desired control is not unique;
it has the form

remain as above. The rather delicate situation

u(t) = (L) + yu(t)
where ﬁ'(t) is a non-zero control steering the zero initial state into the zero
final state and vy {is an arbitrary constant, By contrast, the boundary
conditions

%%(O.t)=0. -g—;'(l,t)=u(t) (1. 16)

lead, incase T = 2T I to a situation where the desired control u(t) does
not, in general, exist. (See [31], [37] for more detalils.)
The analysis of more complicated systems of hyperbolic equations, such
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as the Timoshenko system (1.2), (1.3), is in general rather compl
there are some special cases, including appropriate boundary cond;
which the analysis is fairly simple. In [M] a discussion is giv
analysis of the free boundary case

L2 3 -
 (0,t)=0, ¢(o,t)-3L(0,t)=0,
M ey = ut), WLty -2 (L) = uy(t).

It may be shown that all cross-coupling is of low order and the prol
essentially equivalent to two problems (l.4) with boundary condit:
Two critical times are involved. With (cf. (l.14))

i L
EI(x) 2 - dx
ofx) = (Toay) + Tz ST -
-  k(x) )é' T. = fL dx
CZ‘X) = ( p(x) » 2" b cz(x) ’

it may be shown that finite energy states are controllable if and on
T =2 max{Tl. Tz} .

The essential details of the analysis are given in [30] and are q
to what we have briefly outlined here for (l.4), (1.5), (1.6).

It is immediately clear that the method of characteristics is
adapted to controls u(t) acting at a point, as in (1.6). This
because the control determination occurs at the very last stage of t
after the controlled solution has been computed. If the control
scalar, acts on the system through a '"control distribution function
in (cf. (1.4)) ,
:—t;- -2 (st ZE) = guw,

homogeneous bcundary conditions  (cf. (l. 5), (1.6))

r (x)

z(0,t) = 0, %:—Z-(L,t) = 0

applying at the boundaries, we face what appears at first glance tc
different situation than what obtains in (1. 4), (1.5), (1.6), for ew

. equations comresponding to (1.12), (1.13) will involve the unknown

in this situation; one cannot proceed by fillingout z(x,t) in st

domains as before; a completely different approach is required, ¢
approach can be found in the study of moment problems - a techniq
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by several authors (see [3], [12], [15], [14], [23]). The technique has

the advantage, from the point of view of approximation of being intimately

connected with the modal representation of the system based on the natural

modes of vibration, or eigenfunctions of the operator -r(x)'l(a/ ax)(s(x)(3z/3x)).
It is known (see [1], [7]) that the operator

-1 3 92
Lz = -r(x) 3z (S(X)K ) (1. 23)
with boundary conditions conformable with (1. 22) has eigenvalues
2k-1 2 m?
M=) Tt 8, k=123, (1. 24)
T
1

where the ek are uniformly bounded and ’l.‘l is related to c(x) by (1.14).
The corresponding eigenfunctions, cpk(x) , k=1,2,3,.-¢, form an ortho-
normal basis for Lzr [o,L] (which consists of the same functions as

Lz[ 0,L] but has the inner product
L

(e, ). ={) r(x)e ()¢ (x)dx) . (1. 25)

Every finite energy solution 2z(x,t) of (1. 21), (1.22), i.e. every solution
for which the integral (l1.7) is bounded for all t, can be expanded in the form
(-]

2(x,t) = ), z.(t) ¢ (x)
‘ k=1
where, if we assume the control distribution function f(x) has the expression
. -}

gix) = %, g, @ (x)

k=1
convergent in Li[o, L], the zk(t) satisfy
zk+)skzk=gk u(t), k=12,¢¢., (1. 26)

Letting N
- 2 - ¢ a0
) Uk - )‘k » k = 1: 2) 3:

and using the transformation

L) o= (.27
zZ, 1 1 ¢
one arrives at the system
My Loy 0 ) - /9/2

= +
Ex 0 ~luy $x 9y /2

ut) . (1.28)
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K i'f, It may be seen that finite energy states are those for which

L)
e T 207+ (z)°] < =
I k=1
?ﬁi and this becomes, in terms of T]k, gk ,
‘:v,{?,‘ o z z

ToUnl©#1gl%) < = (1. 29)

,“' #
o k=1
Integrating (l.28), we have, for T > 0,

s i, T I T L (T-t)
e @ -e K n0)e £ [e K Tuma
ki3 1, T g T -l (T-t)
g £ @) - e “k £3(0) = -Ek—jc; e ¥ u(t)at .

Assuming the controllability condition
gk# o, k=19203:"°

we see that the problem of steering between the given states at times 0 and T

- reduces to the moment problem

I [e F f(s)as = 5%, k=123, (1. 30) ‘

PN 0 k i
f'r ey £( Pk k=1 2 3 (1. 31) 1

A e s)ds = —, =1 2 3, ¢, . |

* o %

?;f:;g where s=T-t, f£(s)=u(l-s), and

23‘ 1w, T 1w, T

@, = 2(N @ -e © N 00), By =2gM-e g o) (.32

,fié are square summable.

’:% To solve the moment problem we resort to the theory of nonharmonic

e Fourier series as developed by Paley and Wiener [24], Levinson[2l],

~ Schwartz [42] and many others, (An excellent expository treatment [49] by
\:35‘ R. Young has recently appeared.) The following is known; the three cases

:\% being divided in a manner conformable with the three cases discussed earlier,
,‘.E' : iukt -1 ukt

— Case T <2T;. The functions e , @ , k=123 ¢+, are

P

o
w‘j".) b

linearly dependent in Lz[o,'l'] in a rather strong sense. Any one of these
functions, indeed, any finite number of them, lie in the closed span of the

remaining functions (which, in fact, is equal to the whole space Lz[ 0,T})).
As a result the moment problem (1.30), (1.31) cannot, in general, be solved,
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Suppose, e.g., all but finitely many of the 2 is Bk, say k= K+], K+2,:--,
were equal to zero, while some of the a,, Sk, k=12,---,K, arenon-zero
The linear dependence just referred to shows that such a problem can have no
solution; the equations

f e f(s)ds = e f(s)ds =0, k >K

[} 0
imply that the same equations must hold for k = K,

fw kS -iuks
CaseT =T}, Here the functions e , e , k=12,3,...

form a Riesz basis for Lz[o, zrl] . Every function h e [O, 2T,] has the
unique convergent expansion
® 1uk8
h(s) = }, [hee +h_e

k=1
and there are positive numbers ¢, C, such that

-i
w"s] (L. 33)

«
2 2 2 24,112

s ), (I |®+|h 4 | = Con| (L.34)
o, 2 K Tk 10, 21]
Further, there is a unique dual basis of biorthogonal elements p,, P €
Lz[ 0,2T,] such that

zrl luks k=],
!

tz’ se o
e pl(s)ds = ak,l' Lol sz o

) 1, k=1
%t {o, K# 2

which engenders expansions similar to (l.33), the rolesof ¢, C in the
inequalities parallelling (1. 34) being reversed. The foimal solution of (1. 30),
(1. 31) is then uniquely given by

¢ 2|iny

(1.35)

- 1
f(s) = , 5o [2kPk(E) + Bepy ()] (1. 36)
k=1
If we have
i 'g | =0, .37
" k
as would be the case, . . - ge Lz[ 0,L], then the conditions for

convergence of (1. 36) arc ore stringent than just the square summability of
the o, Bk given by (l.32). We need

o % 2 k ,2
(l=—] +|—— ]| )< = .
I AgEl e ige
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; ‘-‘f-i As a consequence we can steer (l.21) from any finite energy initial state to a
‘&" dense (in the energy norm) subspace of final states, or vice versa, but we
PesE cannot steer between arbitrary finite energy states during [0, 2T,] if (1.37) is
- true. The case of boundary control (1. 6), already treated by the method of
;“ characteristics, will be discussed more extensively below. In that case the
coefficients g, In (l.26) are bounded and bounded below. ~The result is,
2N in that situation, that we obtain the same result this way as by the method of
‘ characteristics - given finite energy initial and terminal states, there is a
31* unique control u ¢ Lz[o. 2’1‘1] steering the one to the other.
Iy 0o
Case T > 2T; . The mfmsdlﬁem?ce between this case and the preced-
ing is that here the functions e k, e , k=12,3,..., forma
o Riesz basis for a proper subspace, E, of L [0,T]. The biorthogonal
fgj functions Pxr Pk exist, but are unique only if we require that they lie in
‘ff E — or we impose some comparable condition, If we agree that ;k’ E—k
belong to E, then any elements
Pr= Pt Py = By tag
’: with q., q_ € etct [0 T]  still form a biorthogonal set relative to the
_- h’k : -iwks . The convergence properties of series involving the pk,
\" p_k are much the same as in the preceding case. As a result we have the
“ same contml; capability asinthecase T = 2'.'|?1 but controls are not unique .,
Indeed, if u 1is a control steering between two given states, the family of
controls & +0, 0 E!,  all realize the same control objective. Again,
this non-uniqueness should be compared with the similar property observed for
T > 2'].‘l in applying the method of characteristics.
Using the theory of distrbutions and related material, boundary value
i control situations such as (1. 6) can be included in the same framework as
J} (1. 26) but with g in a larger space tharé Lz[ 0,L]; ¢ should be a linear
b)Y functional (in general unbounded on L“[0,L]) whose domain includes the
Bl domain, #(L), of the self adfoint operator L, givenby (l.23), with the
;:. given homogeneous boundary conditions. The gy are the values which g
assumes at the eigenfunctions Py € ®(L). A detailed study of these
2 "admissible input elements" is provided in [17] . In this way a unification
”.} of the boundary and distributed control cases may be achieved. One consequence |
-~ of this is that the biorthogonal functions py, P_.x  Which play such an |
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important role in the method based on the moment problem (1.30), (1.3l) can
actually be obtained through the more constructive method of characteristics as
controls steering from a zero initial state (say) to final states constructed
using a single eigenfunction Py of L.

We began our discussion here with the Euler beam equation (1.1) . For
definiteness, let us add a distributed control term (scalar input) and specific
boundary conditions so that we have

2 2 2
3w 9 aw
) + —5 (EI(x) ) = gx)u(t) 1. 38)

p (x —fat " (EI(x ?x (
I w AW
—7(0.11) = o,t) = 0, 1. 39)
ax ax3 ( (
a—zl”z-(:.,t) = 2% (Lt) = 0. (L. 40)
ax

In 1969 J.P. Quinn, in his doctoral thesis [27], studied the controllability
properties of a class of systems including this one, Here the operator
2 2
| Aw = 'pl(:'c)' iz- (m(x):?‘"-)

on the domain in H4[0 L] consisting of functions obeying boundary
conditions conformable with (1. 39), (1.40) has eigenfunctions "k‘x) forming
an orthonormal basis for 12 [0,L] and the comresponding eigenvalues Lk

grow like k" as k—-—wo. With wy = Xk we obtain a system similar
to (128), using a transformation like (I.27) applied to the second order
differential equations resulting from the eigenfunction decomposition:

W #N W = geu(t), k=0,123,...

(a slight modification of (1.27), (l.28) is necessary for Ao = 0; see [34]).

Again there results

[ gk
'lk iwk 0 ﬂk ‘_z—
1= + u(t) (1. 41)
. . gk
3" 0 luy 9" 2,

and the energy expression for (l 38) is, equivalently,

2
&f [ptx) (3 2w 2 +aux)(——) ] dx

ax

or
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k=0
or
- 2 2
5 Z lqkl +|Ckl
k=0
all < o for "finite energy' states. 1w, 8 ~fwe S
Quinn was able to show in this case that the fuixctigns e k ,e k ,
k=0,1,2,3,¢-- (for k=0 repl':-zur:eek,emk by 1l,s) are

linearly independent in L2[0,T] forevery T > 0 (this result by itself
had already been obtained much earlier by Ingham [18] who shows,. in effect,
that these functions form a Riesz basis for a closed subspace of LZ[O,T] for
every T > 0) and, additionally, that there is a positive number, M(T),
such that if the (non-unique) biorthogonal functions pk(s), p_k(s) are
appropriately selected in Lz[ 0,T], these functions are continuous and
satisfy the pointwise bounds

lpk(S)I = M(T), . Ip_i(s)| = M(T), se[o0T]. (1. 42)

fw,s -lwy S

The fact that the e k , € k form a Riesz basis for a closed subspace
of I.z[ 0,T], T > 0, implies that initial states and terminal states with
(in terms of (1. 41)) expansion coefficients Mg, 0° Cx, 0 ang My 1 8.1
can be steered, one to the other, during [0,T] with ue L0, Tj
pxovided that '

E(l I+I I)< Z(l—-‘-—l +l l)< .
k—
The boundedness property (l 42) shows we can also control states for which

Z(l—'—l I <.,
k=0

&
h (l-—-'—-l 1%L ) < o,
k=0 k
this being possible with a control function u(t) uniformly bounded and

continuous on [0,T].

We have noted in connection with the Timoshenko beam system (1, 2), (1.13)
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(1.17), (1.18), that an adequate control theory, based on the method of character-
istics, exists when we have two separate control functions, ul(t) and uz( t),
with which to control the lateral deflection and shear deformation separately.

An open question {s the adequacy of control using a single control input, so

that (1.17), (1.18) becomes, e.g.,

Birey= au,  w(Lt) - (L) =Bu(e)

with az + 52 A 0. This problem is a special case of the more general
question of the controllability of linear hyperbolic systems of dimension n = 2m,
involving m pairs of characteristics, each pair describing a given wave mode
propagating in two opposite directions, by means of fewer than m control
inputs, Some work has been done in this direction by R, G. Teglas in his
thesis [45] and by N, Wick [47], but it is safe to say that no very general
criteria for this problem have yet appeared. Particularly valuable, it seems

to this author, would be a study of the Timoshenko beam system from the
singular perturbation standpoint, elucidating the behavior of solutions and
controllability properties as the modulus of elasticity in shear, k() in (1.2),
(1.3), tends to infinity,

STABILIZATION, CANONICAL FORMS, EIGENVALUE
PIACEMENT, etc.

As all practicing engineers will know, controllability in itself is rarely
the prime goal of control system design. Stability, and related criteria such as
robustness, insensitivity to particular input frequency bands, etc., are more
commonly uppermost in mind. Additionally, there is the question of state
estimation from lower dimensional, noisy observations in order to implement
linear feedback control policies. These subjects have been pursued almost ad
nauseum for linear, finite dimensional systems. In the case of distributed
parameter systems, and hyperbolic systems in particular, the literature on this
subject remains rather sparse and spotty in its coverage.

As in the case of linear finite dimensional systems, stability and stabili-
zation studies for linear partial differential equations have tended to cluster
around two dominant approaches: the Liapounov approach, primarily carmried out
in connection with systems involving some form of ‘'conservation of energy'' law,
and the spectral approach, detemining if, or making certain that, the
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.‘; b eigenvalues of the system lie in an appropriate subset of the left half plane. The
UL
’} 2. f spectral approach suffers from the disadvantages of greater intricacy of
]

Y% computation and the need to show that the spectrum location does, in fact,
determine the asymptotic behavior of the system. The latter brings in questions
of completeness and linear independence of the eigenvectors of the system.

~ We will begin with a short discussion of what has been done with
Liapounov methods. On the theoretical side one can start with a system

x = Cx, (2.1)

RN C generating a strongly continuous semigroup S(t) in the Hilbert space X
(we may have started with a control system x = Ax +Bu, set u = Kx, then
C=A+BK). We set up a quadratic functional

V(x) = (x,Qx),

b § where Q is a bounded, positive, self adjoint operatoron X with Q = qI
‘5 for some q > 0, to serve as a Liapounov function. One may then show that

oy for t; >t and x(t)= S(t)x, a "solution" of (2.1), that

1;5;\‘ -

B (x(t,), Qx(tz)) (x(t), Qx(t,))

~ph

T = - f (x (s), Wx (s))ds

' t

1

. for some positive self adjoint operator W so that, in some sense which one
;ﬁ, needs to make precise in individual cases, |

g I |

g C*Q +QC +W = o0, : (2.2)
s the Liapounov operator equation, is satisfied. An important result, due to

| Datko [10], states that if

f (x(t), Qx®))dt < = (2. 3)

Y for every initial state xg € X, then the semigtoup S(t) is exponentially

\ damped, 1i.e.

ISl = Me™¥*, t=o0,

*’;}:{:‘; for positive numbers M, vy . The condition (2,.3) is satisfiedif W = wl
for some w > 0, as may easily be verified,

-~ Consider the linear symmetric hyperbolic system in Lz [ o,L] =

o (Lo, ] "

P EG) R =AmEE 4B w +£(x,t) (2. 4)
B where E(x), A(x), B(x) are continuously differentiable mXm matrices
5$ defined for x ¢ [0,L], E(x) symmetric and positive definite, A (x)
b

w T O QPCRPT Y N RIN N
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symmetric. The wave and Timoshenko equations can be written in this form.
The "energy'’ usually is expressed as

e(t) = %fo (w(x,t), Ex)w(x,t))dx .

. dree
’. .ﬁ 4
el :

-
9

R

. 4,: With appropriately ‘''conservative' or ''dissipative’ boundary conditions at ;
* x=0, x=L, one ﬁntds that for t, > t; . |
i etty) - ety = [ (3 [ twix, 1), [Beo) + BEx)® A ] wix, 1)) dx

< , 0

L
¥ +f0 (w(x,t), £(x,t))dx }dt.

. If B(x)+B (x)* -A (x) 1is uniformly negative definite or if the n dimensional
e control function f(x,t) may be arbitrarily specified as a function of x and

t, one may use feedback

Y | £(x,t) = K(x)w(x,t) (2.5)

“ in such a way that ‘ t, L

-‘: elty) - ett) = <[ [ (wt), Weaw(x, t))dx dt (2. 6)

__* with W(x) uniformly politive definite and symmetric on [0,L]. Then one

' can apply Datko's result, or more simple arguments, to show that solutions of

3 (2.3), (2.4) are uniformly exponentiaily damped in I.2 [0,L] nomm,

A 2 Note, however, that if B(x) +B (x) -A(x) = or for some other

_ 'J:: reason fails to be positive definite, and if

f(x,t) = D(x)u(x,t) or f£(x,t)= D(x)u(t)

2‘;": with dimu(x,t) =r < R in the first instance, u a functionof t only in

7,»2 the second instance, then we cannot, in general, achieve (2.5) with W(x)

,;’ uniformly positive definite. Comparable difficulties arise when boundary

X control is employed. In such cases it is a form of the La Salle "invariance

principle’' (see, e.g. [19] ) which must be appealed to, rather than the basic f
, Liapounov theory, for an analysis of presumed asymptotic stability properties of
bt the system. This has been discussed in some detail in [36] and [33] and
we give only the briefest outline here.

The "invariance principle'', as it applies to finite dimensional systems,
relies heavily on the compactness of the ' -limit set" of the system in order to
reach the final conclusion of asymptotic stability, Comparable compactness
properties associated with the solutions of an infinite dimensional system are
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generally difficult to realize but the initial attempts to extend the theory nonethe-
less relied on establishing some sort of compactness property., One of the first

:’\j contributions in this direction was due to Dafermos [9] who studied weak

{ § damping of the wave equation, relying on the almost periodic nature of the

"‘:3' system solutions to provide the required compactness. Slemrod [43] studied
j-:::i‘ the boundary damped wave equation by introducing suitably weakened topologies
<3

— as compared with the usual topology associated with the energy norm — and
was able to conclude a correspondingly weakened form of asymptotic stability,

.j:s'; Knowing that controllability implies stabilizability in the case of autono-
-j'-Eij mous finite dimensional linear systems, we are not surprised to find control-
Z.-? lability playing a role in the study of asymptotic stability and stabilization

properties of autonomous infinite dimensional linear systems. This is discussed
in some detail in the paper [28] by J. P. Quinn and the author and also in
[33] . Systems of the form (2.3), but with the control appearing in the bound-

<

-
» .Ahi y

&

:$3 ary conditions, are studied in [28] prior to the main discussion on the boundary
f ! damped, higher dimensional wave equation., We can give an idea of the flavor
"j of the arguments employed using a simple example based on the wave equation
Pl

o (1. 4) with control appearing in the boundary conditions (1.5), (1.6). If in this

2 system one employs the feedback law
o u(t) = -y 5 (Lt), (2.7
SN
.f:f-i the closed loop system is (1.4), (1.5) together with the ''closed-loop' Robin
type boundary condition

3 9

5 S (L +YFE(LE) =0, (2.8)

Here a short computation shows that with the energy £(t) defined by the
expression (1.7) we have, for t, > .

t2
ett,) - ety = -yvpm [ - (Lede., (2.9)

It is not feasible to fit this situation into the general pattemn based on the

Liapounov operator equation (2.2) but, since we expect (correctly) that, along
with (1.4), (L5), (2.8)

e W 9

*
5

| JdE

;n

b

2oL :;
Q.('. '-“;’ﬂ.‘»&

l

5 T (Lt) =0 => wixt)= 0,
:Z:::: an "invariance principle' type of argument appears to be in order, But we
_;-f will use a variation on this procedure which makes use of the controllability

already established in Sectionl, Let v(x,t) be a controlled solution of




(1.4), (1.5), (1.6), u(t) being selected so as to steer the initial state

v(x,0) = w(x,0), F(x0)= 3 (x,0), (2.10)
agreeing with the initial state of the solution w(x,t) of (1.4), (1.5), (2.8),
to the zero final state

vix,T) = 0, 3L(xT)) = o, (2.11)

'1'l as described earlier., Defining the ''energy inner product"

L
(w(-,t),v(-,t)) = {) [p (x)%f-(&t)-g—l'-(x.t) +p(x)%,v;"(>=.t)-g-}t'-(x.t)] dx
it is found, using (1.5), (2.8), (2.10), (2.11), that
(Wl-,0), v, 00) = (wl-,28), v(-, 20) = [w(-, 0)g =

1
=-p(0 [ [3(Lt) JE(L,t) + 3L (Lt) S (L, t)] dt

2T
=p@ [ F Iy (L) + F(Le)lar

2T :
1
=pm [ 2Lty (Lt +u(t)] at.
Here |w(-, 0)"2, the energynormat t= 0, is 2e(0). Applying the
Schwartz inequality

2T
se(0® =pm [ !B (r¢t)?at
0 (2.12)

2T
Lt egEme rugen®ar,
A slightly more detailed study of the control problem for (1.4), (1.5), (1.6) in

thecase T = 21'1 (or T > 21‘1) shows that control from an initial state
w(x,0), %V{- (x,0) to 0,0 attime ZTI is realized with a control u(t)
which satisfies o

1

{ um?Zat =K, e(0)

and, for the resulting controlled solution we have

2T
[P E@meie s Keo

0
for certain positive constants Ko and Kl . Then (2.12) easily vields
2T
1 2
vo@ [ & (re)a = —LO = Ke(0)
0 2 Ky +v7K)) £(0)




and, setting t, = 0, 1:2 = 2‘.1.‘1 in (2.9), we have
C(Zrl) = ¢g(0) -Ke(0) = (1-K)e(0) . (2.13)

Since e(2T)) is, from (2.9), (2.13), positive and less than or equal to ¢g(0)
we conclude 0<1-K<1,

Repeating the above argument on successive intervals [0, ZTI] , [ZTI,
4T1] cee [Zle, 2(k+1)T1] yees and using the monotonicity of eg(t), as
implied by (2.9), we conclude that g(t) decays exponentiallyto 0 as t—a,
The same general argument can be used with a fairly wide class of boundary
damped linear symmetric hyperbolic systems (2.4) and with many other systems
which are energy conserving in the uncontrolled situation and suitably strong
controllability properties. The Timoshenko system (l.2), (l.3), with appropriate
boundary conditions, is in this class. As far as the author is aware, the Euler
beam model (l.1) has not yet been studied from this point of view.

The spectral approach, as we have already indicated, involves a direct
analysis of the eigenvalues and eigenfunctions or, more generally, the spectrum
and invariant subspaces, of the generating operator C for a given system
x = Cx, possibly derived from a control system x = Ax + Bu by the use of
linear feedback u =Kx sothat C = A +BK . A fairly common case, which
can be treated with minimal difficulty, arises when all but finitely many of the
eigenvalues of C have negative real parts., Under generically valid control-
lability-type conditions it is then possible to move the unstable eigenvalues
into the left half plane while either keeping the stable eigenvalues fixed or else
maintaining a certain margin of stability., Work of this sort has been carried out
by Triggiani [46] , Sakawa [40], [4l] and others.

A somewhat more challenging task arises when one starts with a system
having infinitely many eigenvalues in the closed right half plane (usually one
considers a conservative system wherein all of the eigenvalues of C are purely
imaginary) and one attempts to devise a feedback law to move all of these
eigenvalues over into the open left half plane. A number of procedures have been
examined in this connection.

In [32] a second order system with scalar control
X+Ax=bu, x,beX, (2.14)
is studied, X being a real Hilbert space and A an unbounded positive self
adjoint operatoron X . Assumingthat A has a Riesz basis of eigenvectors
"k' k=12,3,..-, in X and cormresponding positive eigenvalues \k ,
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increasingwith k, k=1,2,3,---, x and b may be expanded as

L4 -3
X = Z xkék’ b= Z bk¢k’ (2.15)
k=1 k=1
convergent in X , with square summable coefficients. We assume the
minimal condition for approximate controllability

b £#0, k=123,

The energy form is 3 [( ;c,;c) + (x,Ax)] = ¢ and elementary computations
show that for (2.14) and forany T > 0

T .
e(T) - e(0) = .g (x(t),b)u(t)dt . (2.16)

It follows that with

u(t) = -y (x(t),b) (2.17)
the energy ¢&(t) is non-increasing with increasing t. So far this is
basically a Liapounov approach employing what is known in the engineering
literature as an ILAF (Identical Location of Accelerometer and Forces)
approach. The resulting closed loop system is, still in second order form,

X +Bx +Ax = 0 (2.18)
with B defined by

Bx = y(x,b)b . (2.19)

With y= :'c, one may consider the equivalent first order system in XXX,

x X . @) I
9 = C v/’ u.= A -B » (2. 20)

and ask: what are the eigenvalues and eigenvectors of C? It is here that
one leaves the second method of Liapounov and retums to his first, In [32]
a perturbation analysis is carmried out, valid for small values of vy in (2.17),
(2.19). It is shown that, under the separation assumption

the eigenvalues of C, whichfor y=0 are i-iWk, k=1,23,..., all
have negative real parts for y > 0 and, moreover, designating the perturbed
eigenvalues by Ck(‘l)' k=+1,+£2, £3,¢--, ck(O) = iw, , c_k(O) = -iw, ,
we have (cf. (2.21))

Gl¥) = tw - 3 by 2+ szw_l'F ) k—~e (2. 22)
k
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| Wkl
It is also possible to show that the perturbed eigenvectors cont
Riesz basis for the space XX X . From this it follows that
(2.18) tend strongly to zero in the energy norm, though not at
ential rate.

Following Wonham's initial results [48] on the finite ¢
there has been considerable interest displayed in the question
determination via linear feedback for distributed parameter sysi
of the system (2.14), equivalently,

X (@] I x 0
. + u,
Yy ~A 0 Y/ b

with initial (u=0) eigenvalues + iwk, k=12,3,°--,
be phrased as follows: we suppose use of a linear feedback £

Ex(¥) = -iwy - 3 (B |®

L
u= (A%, k) +(v.k,), kK, €X,

1
bounded relative to the energy norm (x,Ax) + (y,y) = (A%x,
XxXX. With ‘ L
' ' Kjx = (A%x, k)b, K,y = (v,k,)b
the closed loop system is
x O I X

Y -A +K K Yy

1 1

One can now ask: What eigenvalues can be achieved for the «
system (2,24) by .appropriate selection of kl' k2 in (2.2¢
time the author was under the impression that his approach via
[35] (more on this below) was the first treatment of this q
fact, it appears that this credit must go to Prof. Sun S. -H, of
University who treated this problem by a more sophisticated ag
perturbation technique used by the authorin [32] to obtaint
Sun was able to show, with an assumption similarto (2,21) a

basis assumption on the open loop eigenvectors, that the total
achievable by use of (2. 25) coincides with sequences % »
1,2,3,--- for which, assuming the by 7 0 as before,
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N His very important paper has been translated by Ho L,-F. in [44]. Some !
comparable, but necessarily weaker, results have been obtained by Reid in his |

thesis [29] for the equation of linear surface waves where (2.21) is not
satisfied and, in fact, lim

e ( Widl = ) =0, Other results in this

Ve k -

5 direction, for hyperbolic systems of various types, have been obtained by Clarkl

vl [5]1, [6] and by Ho in his thesis [16]. :
%

| Much of the initial impetus for the study of control canonical forms, '
N both for finite and infinite dimensional systems, came from the spectral !
5

determination question discussed above, but the subject is interesting in its ‘
own right and shows some promise of being adaptable for '"real world" control |
implementation. The reader will recall that a finite dimensional controllable |

AR

@

if system

‘ x = Ax +bu, xe R",

;g with scalar control u is equivalent, via a state space similarity transform-

‘ ation (see [20], [35] ) to a system in rational canonical form corresponding
‘“ to the n-th order scalar equation

é y(n) + aly(n"l) $oee + an-lY' +tay=u, (2.27) '

where i
- I n-1 |

p(A) = det (NI-A) =\ +alk +---an_lk +a, !

is the characteristic polynomial of the matrix A. Comparable, but somewhat !
more intricate, results are available for systems with higher control dimension ‘
[20], [2]. In [38] we note that if one employs a scalar linear observation i

LE A At

|
:: y=h'x = (xh), (2.28) |
.2 there is exactly one observation vector h ¢ R"  for which (2. 28) satisfies ‘
.. (2.27); forgeneral h the right hand side will involve the derivatives of u
oforder =u-1. Systems (2.27) are particularly easy to deal with,
: Closed loop eigenvalues Cl » G0 ° 0 Cn may be realized simply by forming
,:'.' the polynomial
q(N) = '|T(x g) = \" e Nl ke A to

k=
and determining u by linear feedback on the observation y and its

s

s
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derivatives,
u= T (3-q )y . !
k=1
Apparently less well known, but quite obvious, is that the control problem for
(2.27) is, in a sense, trivial. Let us suppose the initial instant is taken to i
be t =0 and control is to be effectedduring 0 st s T. Let the m1t1a1|

state be specified by

y® o) = vy py. k=L2-n (2.29)
and the terminal state by |
|
y®®@ = v . k=L2-e,n. (2.30) |
If y() satisfies (2.29) and '
y®W(t) = v(t), ostsT (2.31)
then we see readllythat for k=12,...,n
(k-1
y® e - 2‘, Yoors1 o * f (- visras
t=1 0
and (2.30) is achieved just in case
T k-t
k-1t I
j; (t-s) " v(s)ds = Y__ 2 Yn-1-1 WD) *

=1
k=12, .-o,n,

This is easily solved for v in various function classes, e.g. polynomials o'f
degree =n -1, etc. and, it should be noted, the solution has nothing to do |

with the coefficients in (2.27) so the calculation can be carried out once for

any given T and recorded for use ever after. Then in a given canonical
system (2.27) we need only set

T (n-k)
u) =vE) - F oy (t) (2. 32)
k=1
to realize the desired control objective,

Since, in a given control context, it is not likely that the available
observation (2.28) will be the particular one for which (2.27) obtains, the
above result might seems to be a generally useless curiosity. It tums out,
however, that in canonical form theory there is a counterpart to the more widely
known observer theory, I C is any nXn matrix whose minimal and

- ———
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characteristic polynomials coincide, it is possible to select (non-uniquely) r,
d and J such that the augmented system

x = Ax +bu (2.33)
2 = ry+Cz+du (=rth*x+Cz+du since y= h'x) (2. 34) -
with augmented observation
w=y+]*z = h*x-l-j*z (2. 35) -
is in canonical form, so that for some coefficients @, @y, e, |
wiZ) alw(zn'l) LA - PYS w + a, w= u,

The adjoined system (2.34) can be realized electronically, just as an observer:
system is, and the considerable freedom in choiceof C, r, d and j '
provides much design flexibility. In some cases the dimension of (2.34) can:
be reduced. The proof that (2.33), (2.34), (2.35) can be made a canonical |
system appears in [38].

A parallel control canonical form theory has been developed for certain
hyperbolic distributed parameter systems, 1nvolv1x{g neutral functional equationsJ
in place of the n-th order scalar equation (2.27). The theory is quite complex,
especially as it applies to partial differential equations with variable
coefficients (see[35], [16], [38], [39] e.g.). To give an idea how the
theory is developed we will consider the constant coefficient case of (1. 4)
which, without loss of generality, we can take to be

2
3"w Iw
- = 0, t=z0, 0sxs1], (2. 36)
at}- 8x2
w(o,t)=0, & (Lt) = u(r). (2.37)
The normalized eigenfunctions of the corresponding homogeneous system are
B0 = NZ sin ZL ax, k=123, ... (2. 38)
Setting Wy = 31‘-2:1 w and forming the expansions
(]
wix,t) = ) w(t) . (x), (2.39)
k=1 '
-« :
Jxt)= T w(t) g (x), (2. 40) |
k=1 :

followed by the transformation

S A Ty -r_;-rc"4.;1-:{!-&'}:}{:\_':%&!:\’;\1\1**
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w, 1 1 1
k Tw, T Tw, k |
= (2. 41) |
vk 1 1 t.k

we have, for k=1,2,3, +--
* _l k-l B -l k-l '
'lk = lwqu + LL—JT u (t), & = -1wk4;'k + u—Jz_ uf(t). (2. 42) |

Consider now the neutral delay equation
y(t+2) +y(t) = u(t+2),. (2. 43)

The characteristic function of the homogeneous equation is

p(A) = e +1 = 2¢* cosh 2 |
and the zeros of p(\) are precisely the eigenvalues + iwk appearing in
(2.42) . The transfer functlokn for (2.43) is ‘

~ 2
= 8 - 1 sinh A 1
To(M) = 2X,, ° Z CoshX + 3 (2. 44)
which can be rewritten as
(]
' _ A 1 _ 2k-1
To(M) = ) ——5 +t3, o= S55-7. (2. 44)
A+
k=1 k
If we"deﬂne an observation y (t) on (2.42) by
N _ -
v(t)= 3 [ () +g g ()] + Su(e)
k=1
the transfer function for y 1is, formally,
- k-1 L1 k-1 1 _
7 e U S L ) B Y
: . 2
k= Mo duy o My
which may be seen to agree with (2, 44) just in case
k
-1
h =g = .—L—L .
k
k N2 i
Using (2.38), (2.39), (2.41), (2.42) it may be seen that thischoiceof h,,g,

corresponds to A .
y(t) =% %‘{—’(l.t) + %u(t) =-1?: (%t”l(l,t) + %‘%(m)) . (2.45)

This observation on (2.42), and no other, satisfies the scalar equation (2. 43)
which serves as the control canonical form for (2.42). The details of the above
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calculations and some idea of the form of a general theory appear in [ 38] and
[39].

If the canonical observation (2.45) were actually available, so that
we have (2.43), its usefulness is quite clear. For, with the causal feedback
law

2
u(t+2) = (1- y)y(t) - [ c(s)y(t+s)ds (2. 46)
0
(2. 43) transforms to
2
y(t+2) +yy(t) + [ c(s)y(t+s)ds = 0 (2.47)
0

Gt Gt
and it is known from [35], [44] that the exponential solution e k , e k

of (2.47) can be made such that

where « is a complex number (ordinarily negative) determined by y and
€xr €y are arbitrary complex numbers, determined by c ¢ LZ[O, 2], such
that ® _

2
Y olglP+le | <e.

k=1
It may be shown that these are the eigenvalues of the closed loop system (2.36)

(2.37), (2.45), (2.46).

In a given application, however, it is entirely likely that the particular
"canonical'" observation (2.46) will not be available. Indeed, in the examplé
indicated, since this observation is taken at the same point where control is
applied and might, therefore, be subject to a certain amount of noise
disturbance, it might not be desirable to use this observation in practice. To
illustrate the use of the technique of canonical augmentation (or ''canonical
compensation', perhaps) let us consider the same system (2.36), (2.37),
but suppose the available observation is

y(t) = 2% (o,1). (2. 48)

It is not hard to show in this case that y(t) satisfies

C e e - p—pe——— - 8 -+

y(t+2) +y(t) = u(t+l) (2. 49) -

rather than (2.43). This 'central' control canonical form is not as usable as
the "backward" form (2.43) because, unlike (2.46),

2
u(t+l) = (l-y)y(t) - J(; c(s) y(t+s)ds

e T -V a N d
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is not a causal feedback law and cannot be implemented. But now couple (2.49)

f"’f with
¢ z(t+2) + pz(t) = au(t+2) +bu(t+l)

+cy(t+l) +dy(t) (2.50)
ﬂl and let |
v wi(t) = y(t) +z(t). 1
:

4

One ordinarily will take |p| <1 so that the homogeneous part of (2.50) is .
asymptotically stable, thus avoiding the growth of parasitic solutions in the
compensator. Since

% '..‘L.....LL&V‘

£ |

p [y(t+4) +y(t+2) - u(t+3)] + ply(t+2) +y(t) -u(t+})] =0 |
while

4 [z(t+4)+pz(t+2) - au(t+4) - bu(t+3)-cut+1)-cy(t +3)-dy (t +2)]

3 +[z(t+2)+ pz(t)-au(t+2)-but +1)-cy(t +1) - dy@t)] = o0

we find that

3 w(t+4)+ (14 p)w(t+2)+ pw(t) = au(t +4) + [1+bJ u(t+3)

:: '

i Fau(t+2) +[p+b]u(t+l) +cly(t+3) +y(t+])]

v - {

+d[y(t+2) +y®)] = (using (2.49)) i

’f‘ au(t+4) +[1+b] ut+3) +[a+c] u(t+2) +[p+b+d] u(t+l).

,

* Then it is easy to see that with

) a=1, l1+b=a+c=p+b+d=0,

A f.e. with : : ;

= a=l, b=-l, c=-l, d=1-p, !

1Y .

" we arrive at the '"backward" canonical form satisfied by w(t): 5

| w(t+4) +(14p) w(t+2) + pw(t) = u(t +4) :

} for which causal feedback laws

B u(t+d) = -yw(t+3) +[1+p -v,] w(t+2) - Y3 w(t+l) A

43 4 (2. 51)

+[p-v,] w(t)-‘{; c(s) w(t+s)ds

3 may be implemented, yielding overall closed loop systems

?
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w(t+4) +y1w(t+3) +y2w(t+2) +Y3w(t +1) +y4w(t) f

4 2.52) '

+ [ c(s)w(t+s)ds = 0. ( |
0

It is necessary to check separately that the system (2. 49), (2.50), (2.51) is @
observable in any given case. 5
The exponential solutions of (2.52), and hence the eigenvalues of
(2.36), (2.37), (2.48), (2.50), (2.51) may be determined with the same
flexibility as already noted for (2.47). This is discussed in some detail in the
thesis of R. G. Teglas [45]. A complete theory of canonical compensation
for hyperbolic systems remains to be developed but, we hope, the example
given here gives reason to believe that the method is a promising one. It is
clear that there are some connections with observer theory as developed in

[22] and elsewhere; these connections remain to be worked out.
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‘? Admissible Input Elements

*® for Systems in Hilbert Space

:2 and a Carleson Measure Criterion
= by T.F. Ho' and D. L. Russenn*®
)

4
X

Abstract

We study the control system

x=Ax+bu, xe X, u scalar

pe where A generates a semigroup on the Hilbert space X but, in general,
N the control input element bf£ X, Many boundary value control systems,
point control force situations, etc. , can be studied in this context . We

define and analyze "admissible' input elements b and develop sufficient

conditions for b to be admissible in terms of the Carleson measure theorem
" of Hp-theory .
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1, Introduction. One commonly studies linear, time invariant control

systems in a Banach space X in the form
x=Ax+Bu, xeX, uelU, (1.1)

where A is the generator of a strongly continuous semigroup of bounded
operators {S(t)| t = 0} on X and B is a bounded operator from the
control space, U, into X, If u:[0,)—-TU is locally (Bochner)
integrable, generalized (or 'mild") solutions of (1,1) corresponding to
an initial state

x(0) = xos X

can be represented by the ''variation of parameters" formula (see, e.g. [3],
(1)
t
X(t) = S(t)x, + [ S(t-s)Bu(s)ds (L 2)
0

and a number of properties of x(t) thereby deduced .

It is well known, however, that most of the '"interesting' infinite
dimensional control systems do not arise this way because the degree of
controllability of a system (1.1) with B bounded is rather restricted if, as
is usually the case, U is finite dimensional or for some other reason the
operator B is compact. Indeed, most of the mathematically intriguing
examples arise in the context of partial differential equations with boundary
value control inputs, control forces exerted at isolated points, etc., and in
the context of functional equations which involve values of the control of

discrete instants , viz,; u(), u(t -Tl), eee, u(t 'Tn) . In each of these

cases the formulation (1,1) is inadequate and one must consider input
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operators - B whose range is not restricted to the space X.

A number of authors have addressed the problem of interpretation of (l.1)
for operators B of rather general type . We particularly cite the contributions
of Curtain and Pritchard [3], Zabczyk [22], Fattorini [6], and Washbum [20] .
It seems fair to say that, as brought out in‘ [3], the theory is more extensive
and generally applicable in the case of systems of "diffusion type', ordinarily
involving holomorphic semigroups, than in systems of ''wave' or hyperbolic
character .

In the present article we shall restrict our attention to spaces X which
a;re separable Hilbert spaces and to finite dimen_sional control spaces U,

Taking U tobe Rm, (1.1) becomes

m
x = Ax+ ul L
L b (L.2)
=1
where bj is the control input element associated with the j-th control
component uj . Since every solution of (1.2) is @ linear combination of
]

solutions of x = Ax and theindividual systems x=Ax+b, u

»

j

i=L2,...,m, we may, without loss of generality, confine our discussion
to systems

X = Ax +bu (1. 3)

wherein the control u 1is scalar valued, Much of our theory can be
extended to cases wherein U is infinite dimensional but we will not do
that here .

What distinguishes the present study from earlier contributions is the
attention which we pay not only to the relationship between the operator, A,
and the input element b, but also to the relationship between b and

the semigroup S(t) generated by A. In cases where A has discrete

. e e e e e A e a4 e e Nt e T et et tat.t . L et
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spectrum {Xk |k € K}, K being a countable index set,

to a study encompassing the input element b, the eigenve

of A, the comresponding eigenvectors of the dual operator,
defined in Section 2, and the exponential functions exp|
It is in particular reference to the latter that what is probably
important idea of this paper is develcped , We show that a

condition for b to be an '"admissible input element" (def

can be given in terms of a measure on Borel subsets of the cor

whose support s {-A\, |k € K} . When that measure tums

Carleson measure the input element b is admissible . Thi:
out yet again the intimate relationship between the control the
dimensional linear systems and parallel developments in HP

([5]., [8]., [12]) ‘and the related theory of completeness ar

of sets of complex exponentials.
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h.‘. 2. Admisside Input Elements.
23
) let X be a separable Hilbert space and let A be a closed operator

)

- on X with domain, 8 (A), dense in X, generating a strongly continuous
f‘: semigroup of bounded operators S(t) on X for t 2 0, For be X
\ | the (generalized, or '"mild") solution of
* . 2
%.‘ x=Ax+bu, uce Lloc[o,a), (2.1)
b =
Cﬁ x(0) X € X, (2. 2)
" is given by the '"variation of parameters' formula

3 t
N x(t) = S(t)x, + [ S(t-s)bu(s)ds (. 3)
% ° "%

and may be seen to be a continuous function x:[0,o) =-X. Whether
g x(t) is defined foreach t = 0 and (2.1) holds is more complicated:
b sufficient conditions are that b € §(A) orthat u is differentiable as
W
a functionof t ([3], [11]).

4

E}; In this paper we wish to consider (2.1), (2.2) in certain cases where
o'l
?ﬂ b does not e in X and to provide, for such b, a formula parallel to
"- (2.3). Our approach is similar to that used in [14].
Identifying X with its dual X', we denote the duality relationship
";-I by (x,y), xe€e X, yeX, Unearinboth x and y. Where X is
e the complexification of a real Hilbert space X, the conjugate element Y

!
- is well defined foreach y ¢ X and, with ( , ) denoting the inner

‘0

. product in X,
" ‘ — —
T (x,v)= (xv)., (x,v) =(xv). |
(‘ The bilinear form ( , ) is symmetric, l.e., (x,y) = (y,x), x,y €X, }

L NN » ‘w Y Ny "
LAY O T O A O OO D DRI Y Y



and, forall xe X,

[ {x,v)]
uxux= su —_— (2. 4)

p
g; )g "Y"x

The symbol A' will be used to denote the dual of A relative to the bilinear

foom ( , ), thatis
(Ax, y) = (x,A'y), xe 8(), ye S(A).

The operator A' is closed with domain §(A') densein X. It is known
that if A generates a semigroup S(t), then S(t)' is also a semigroup,

generated by A'. See [4] for details .

Let Y be a dense subspace of X which is a Hilbert space in its
own right withnom | |, strongerthan || |, so that the injection
map

=Y =X
Jy)=y, veX,

is one-to-one and continuous with dense range Y CX . We further suppose
that Y is invariant under the actionof S(t) :y e Y=>S(t)'ye Y,
and that this map is continuous with respect to ﬂS(t)'y[]Y Yy "Y and the
usual topology of [0, =) .

let Y Dbethe dualof Y withrespectto X as described, e.g. in

[1], [14], [15] . This means that Y' is the closure of X with

respect to the norm
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It is known that Y', so defined, is a realization of the dual space of Y
and it is easily verified that the bilinear form (x,y) may be defined, by
continuity, for xe€Y , veY as

(x,y) = lm (%, v}

-—
where {xk} is a sequence in X convergingto x in | “Y' . So
defined, (x,vy) generates, as x ranges over Y R all continuous

linear functionalson Y. We have

XcXcy.

Definition 2,1. In the system (2.1), fi.e,,

2
x = Ax+bu, ue Lloc[o,o),

b is an admissible input element if there exist Y. Y, as above, with

be Y, suchthatforevery T > 0 the continuous map

Ly:Y — C[o,T]
defined by

(Ly)t) = (b,S('y), veY¥Y, te[0,T], (2. 6)

has a continuous extension to

2
Ly : X — L°[0,T] .

Remark. Itis clear that this amounts to the statement that in the dual observed
system

y = Ay

(b,y),

Wt Tt T -5-.\-\.*-\«\-..-\-\-_--\ ..-\._\
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8
b is an admissible observation element; thatis, for vye Y,
z(+)=(b,S(+)y) e Clo,T],
this relationship extending continuously to 2 (-) € Lz[ 0,T] for yeX.

To verify that Definition 2,1 enables consistent definition, at least

in a generalized sense, of solutions of (2.1), (2.2) when b 1is an
30
\ admissible input element and to establish some of the properties of the resulting
ek '
,'~‘ solution, we present
7} Theorem 2,2 . If b is an admissible input element, the formula
}«“ -_—
N t
37 (x(t),¥) = {xp S(0'y) + [ {b,S(t-s)y)u(s)ds, ye¥, (27
T o
. defines, for each t = 0, aunique element x(t)e X. Given T > 0
a0
b and ue LZ[O,T]
=
A x(t) = S(t)xy +B(t)u, te[0,T], (2. 8)
”,“ where B(t) is the strongly continuous family of bounded operators
B(t): L[0,T] —~X givenby
- t
(B(t)u,y) =f(b,S(t -s)'y) u(s)ds, yeY, (2.9)
'{‘”1.,: 0
Loy
ffﬁ“"e: Proof. From (2.8) and the factthat Y s densein X itis clear that
;"m
— x(t) - S(t)x, = ¢(t) = B(t)u
i
25 where, for ye Y,
o
Ny t .
i (¢t)y) = [(b,S(t-5)y) u(s)ds.
e 0
Al
:3:;:: Let xe¢ X andlet {yk} be a sequence in Y convergingto x with
j;};i' respectto || ° |x . Since b {is an admissible input element the
%
)jo _‘ Y AR S A T o e CPRIS X \_\_\ DS *-;.\' N \:.\:.\'.\‘.\“'\;.'.‘ NORTAAA
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corresponding functions h defined by

k
h (t-s)= (b,S(t-s)'yk) (2. 10)

converge in LZ[ 0,T] toafunction he LZ[ 0,T] . Defining
t
(e@t),x) = [ h(t-s)u(s)ds,
0

we see that for te [0,T]

, h
<, x| = | “LZ[ .

0,1] "“"LZ

[0,T]

= Lol Ixlly Jul
Ly x4l 200 0

since (cf. (2.6), (2.10)) h=1I,x. |Hence ¢(t)eX =X. This

also gives

showing that for t € [0,T], B(t) is bounded with

I3l = Ll -

To establish that ¢ (t) is continuous in t for each fixed

ue LZ[O,T] (and, hence, that B(t) is strongly continuous in t), let

OSts/t\s'l‘ and form, for y € Y
/N
t 1
(e (D -egm,y) ={ (b, S(t-s)'y) u(s)ds

t
-j; (b,S(t-s)y) u(s)ds = (with 7t=s5-(t-t))

t
- {)‘(b.sn- Oy )u(c+(E-) dr - (b,5(t-5)'y) u(s)ds
0

-t

+f  (b,S(t-s)'y) u(s)ds =
0




¢

:
. 10
i
" - P
s t . t-t .
e = f(b.S(t- s)y) (u(s+(t-t)) - u(s))ds + f (b, S(t-s) y)u(s)ds
N 0 (]
= DLl 0yl (u (e +@-ty - ul , -+ [u]
. - - U u °
X 1*[0,t] 1%[0,t-1]
ok
;21 Since Y isdensein X and since for fixed u € Lz[ 0,T] we have
.‘;;‘._
i lim  ful = 0
T-t=0 " 'LY0%-t] |
Ti:' Um, [u(- +({t-t))-ul Um  Ju(- +{t-1) - uf 0
o m flu(- -t))-u = . -t)) -u =0.
o ttt L2[o,t] T 4+t 12[0,t]
& We conclude that for fixed u € L2[0,T], and t,t as descrbed, |
Pk |
'3 ~ ‘~
um, fle(t)- e(t)x = Um fle(t)-g(t)y = 0
e and thus ¢ (t) is continuous in X. This completes the proof of the
.
;‘i theorem ,
o Let H be a separable Hilbert space and let {p |ke K} bea
& sequence in H, K being a countable ordered index set . The p, are
s strongly independent if no P lies in the closed span of {p ' ERBIN
.L If, in addition, there is a positive number ¢ such that whenever
B P =) aP., (2.11)
4 Ko
" the @ being complex and K, an arbitrary finite subset of K, we
— have
' 2 2 2
£ Ll l® = c°lrilg (2.12)
LS
";‘i‘ we say that the Px are uniformly _lf -independent, since (2,12) implies
K= 2 2 2
» Llagl® s ey (2.13)
e

2T AN Y I 2% Py W p
U e K Il R A RS Rl oS B0
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% whenever {ak} €1 and p= 12{_‘, @, Py is convergent in H .
. If there is a positive number C such that

A%

o 2 2 2

8 lelg = G* T lay

% Ko

p asin (2.1), we say that the sequence {pk} is uniformly _1_2 -convergent

2

since this property implies that if {ak} €1 the series Z @, p, s
K

convergent in H and

¥

2 2 2
iely =C }é lay . (2.14)

W

Recall that a sequence {pk} in H forms a Schauder basis for

H ifforevery pe H there are unique coefficients ay such that the

o ol

G o 0 g

series z @, P converges to p in H ([21]). A Schauder basis
which is, at the same time, both uniformly lz-independent and uniformly

oot

lz-convergent is a Riesz basis . For evident reasons we shall also use,

synonymously, the term uniform lz-basis . If {pk} is a uniform _z_f -basis

for H thenevery p in H has a unique convergent representation

&

¥ P= ) oy

A «

o with  (cf. (2.13), (2.14))

0y

T -2 2 2 2 2
Y layl® s UplGy = T Loyl
X K K

k)

w2 For the remainder of this section we suppose that

-

(1) the operator A with dense domain §(A) € X generates the strongly

{ ,,‘5

~
!

continuous semigroup of bounded operators S(t), t=0;

o
-

e
R e

e

A

''''''''''
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‘- (ii) o(A), the spectrum of A, consists of discrete, simple

):'-: eigenvalues )‘k' ke K, and the corresponding normalized eigen-
= vectors ¢k , ke K, form a strongly independent, uniformly t‘?'-

;;1 convergent Schauder basis for X,

i Sincethe g , ke K, are strongly independent and have closed

g& span equal to X there exist unique biorthogonal elements ¢k, ke K,

h such that

- , k=1

S} (!Ilk. ’Sl) = o, Kt ,. k, £t € K,

‘": As is well known, the npk are eigenvectors of the dual operator A’

i corresponding to the eigenvalues )‘k’ kekK,. We further assume

gé (ii1) the eigenvectors ¢k of A' have the property

}‘x Ye¥Y X,

(this is true, for example, if Y D s((A' )r) for some positive integer r) .

If x e X, the fact that the ySk form a Schauder basis in X

implies the existence of unique €y’ keKk, such that

.

-

R x = % €y P » (2.15)
the series converging in X, From this it is evident that

. g = (W.x), keKk.

‘ We are not assured, in general, that‘the gk are square summable but the

—. uniform zz-convergence property of the #k shows the square summability

i;i:. of the sequence {gk} to be a sufficient conditdon for convergence of (2.15) .
R

A !

)

i.. '
*

P

e - ""F't.; ‘fr' "-’;;‘I‘.\f-.
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Since we assume the "’k liein Y, given any element be Y
(and this includes b € X) we may define

,,
A

and obtain a set of coefficients bk », ke K, associated with b, In

,
7 ‘vlk

-~ .
. » \".

.

g O
gt Py

is X=1%o0,2r], Y-=HYo,2%], q,k(x):(zw)'leik", k=012 «0n.

e

The Y (= gSk) here form an orthonormal basis for X and belongto Y

Py

7,

but there is a non-zero element, namely 5

all of the

]
bk are zero, This arises, of course, because the closed span
of the "‘k in Y 1isnotequalto Y.) As aconsequence itis not

generally meaningful to write b = z b, #k .
K

Nevertheless it may be meaningful to consider the initial value problem
(2.1), (2.2), i.e.,

x = AX + bu
- 2
x(O)-xoeX, ue Lloc[O.w).

for certain be Y, namely, those that we have already characterized as

admissible input elements . We wish now to show that the class of such
admissible input elements can be characterized in terms of the coefficients b

and the eigenvalues )‘k . If x(t) 1is the solution of (2.1), (2.2)

established by Theorem 2,2 for an admissible input element b  then,
in particular, for t =0,

(x®),4) = (x, SO 4)

+ ft(b, S(t-s) W) u(s)ds
X.kto ft kk(t-s)

xo.k + A e u(s)ds

=e

general it is not possible to recover b from the coefficients bk . (An examp14
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I where
3
‘n} -
xg = L %o,y By -
. K Nt
44 We do not know that the numbers e = X5 are square summable
o ’
A but the series
.~
N ) ex Kt 4
0,k "k
o K
fﬁ’;; must converge to S(t)x0 by virtue of the (assumed) Schauder basis property
~
o of the ySk . It follows that a sufficient condition for x(t) to belong to X
," is that the numbers
A
B t A (t-s)
N .
’ y(®) = b, f u(s)ds (2.17
Ay
» should be square summable foreach t= 0. Equivalently, making a trivial
,, change of independent variable,
N
NN t s
fj k(t) kf )\k f(s)ds, f(s)=u(t-s).
5 The necessity of considering an infinite number of values of t can be obviated
gy .
:53 by taking f to be an element of Lz[ 0,T], T > 0 fixed, and defining
b f(s) =0 in [t,T] for t< T. Themap
A T \, s
3 te=b [ e* fsyds, feI?[o,T], (2.18)
O] (]
i so defined may be designated as
51)
= Ly : 2[0,T] - X, (2.19)
*d - -
) L = x = ) ¢ 8, (2. 20)
K
% and it is easy to see that L'.r is the dual of LT :X - 12 {o,T] as
Q defined by (2.6) . Thus the boundedness of L., as required in
L

LRE )

A
W s

B ‘s > &
l-.

....................
.............................
...............
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Definition 2.1, may be obtained as an immediate corollary if it is shown that
L'.r . defined by (2.18) - (2.19), is bounded. For our present purpose
this is the route of choice .

Extending £ further via f(t)y=0, t > T, the Laplace transform

of f is the entire function
® T
$(2)= [ eZemar= [ e gpat,
0 0
Interms of @ we clearly have

Le =B B (-N}), ke K,

and the following proposition is evident .

Proposition 2,3 . The operator I‘T ( equivalently L'T ) is bounded

just in case, forevery fe LZ[O,T] the laplace transform of f, ¢ has

the property

2
2 1By BN < =, (2.21)
K
We are fortunate that the inequality can often be established with the

use of the concept of a Carleson measure and the corresponding Carleson measure

'theorem as it applies to the space

H"; = H{z | Re(z) > a}, a real . (2. 22)

The space Hz{zl Re (z) > a} consists of those complex functions g(z),

analytic in Re(z)> a, bounded in each half plane Re(z)za +6, §> 0,

" and satisfying

f Iﬂ“&*m)lzd'\ =M;, ¢2>e, (2. 23)




...............
.............

where M y is a positive number depending only on ¢ (and not, in

particular, on ¢). Itis known (see, e.g. [10]) thateach such

N function has a limiting '"'boundary' function

I

."-
5 Bn(N) = lm d(g +in) (2.24)
:" £ { o
?’{; defined almost everywhere in -2 < 1 < = and gSa(Tl) is measurable

&
with

t» @ 2

24 dn = M, .

R f_e Ma(ﬂ)l y é
& 2 2
b Each ¢ € H, is the Laplace transform of a unique function fe L] o’::[ 0, =)
N

such that
® ot 2
e f(t dt < .

,\ [ ® | -

.-3 Let W be a (non-negative valued) measure defined on the Borel

& subsets of {z [ z>al. Then K is a Carleson measure if for every real
p.-) T andevery h >0
5
u w{z|t-h=Im(z) = T+h, @ <Re(z) = a +h}) <An  (2.25)
t for some positive A dependingonlyon § (noton h).
w0
L For a Carleson measure we have
N

,,;-j‘
- Theorem 2, 4. I ¢ is aCarleson measureon {z |Re(z) > @} with A
‘.w': 2
é: asin (2.25), if geH_ , and g = isgivenby (2.24), then
NG 2 10004 (® 2
s [ @l a@ = =3 [ 18, m)|%an . (2. 26)
' {z|Re(2)> T -

Y

i
F A

PN BN
Phage
&‘ a3

o+

- x":*’,

ot £ 4%
> -

-
-
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A proof of this theorem is offered, for the sake of completeness, in
Section 4 of this paper. The relevance of this theorem for our present studies

is exhibited in the selection of a particular measure TR For beY anda

given discrete spectrum {Xk} for A, let
po=p
b, {)‘k}
be defined by
2
k(-Np) = |b |, Xk € X, (2.27)
p({z|Re(z) > e} - {7, |k e K}) = 0. (2. 28)

In this case the left hand side of (2.26) becomes

Z lbk¢(")‘k)l2
K

(cf. (2.21)).
The PlancherelTheorem, on the other hand, gives
[--] -]
L (n)lz dn = 2w [ |e‘°‘tf(t)12 dt
-0 a 0
2| e|T T 2
= 2e v [ Jf®]dt
0
when the support of f is restrictedto [0,T]. Thus
T
Y, Ibkri(-hk)lzs 2000e2121T %-{) |£(t)] % at
K

and, in view of our earlier discussion, we have

Corollary 2, 5. A sufficient condition in order that b e Y should be an

admissible input element for the system (2.1), wherein o(A) = {Xk |k € K}

and the comresponding eigenvectors ¢k’ k e K, form a strongly independent ,

uniformly lz-gonmrggnt Schauder basis for X, is thatthe measure
defined by (2.27), (2.28) should be a Carleson measure in _
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{z|Re(z)> o} for somereal a.

We remark that the assumption (i) above together with t
Theorem ([4], [11]) implies that the complex numbers A
indeed, confined to some right half plane Re(z) > ¢ . The
support of f is restrictedto [0,T] implies that the corres;
transform g is entire and satisfies an inequality (2.23) for

(M¢= M¢,a here) .




3
4
o 19
‘\..
b
Y
{
"'h'
N _
& 3, Identification of Admissible and Inadmissible Input Elements; Examples .
b\
Our first task in this section will be to develop a method whereby input

,I elements b not in the state space X may be identified as particular elements
1
of a larger space Y' . The assumptions made will be somewhat more
) restrictive than thos introduced in Section 2 ., They are by no means necessary
: conditions .
4
:* Let us suppose that the operator A, generating a strongly continuous
)

semigroup S(t) on the Hilbert space X, has (dense) domain 8(A) and
“ that A possesses discrete eigenvalues )‘k’ kek, with
'
"l';’ lim lkkl = ®,

p(k)—= =

g Here p(k) denotes the number of elements e K suchthat f <k with
:‘5 respect to the assumed order relation on K. The corresponding normalized
"l
) eigenvectors ySk are assumed to form a uniform basis for X, We denote
' the dual operator by A, It has the same eigenvalues )‘k and the comresponding
¥ eigenvectors ¢k , k € K, will be assumed normalized so that
A
- ( ) 1, k=1¢
- $ys =
e
"2 The "I"k also form a uniform basis for X, as is well known . Then it is
easy to see that
s 2
‘;: 8(A) ={y=2xk¢kl2|)~kxkl < =}
: K K
o, and that
_ . _ »
' 8() = {y = Ly, WLy l® <=}
,'1;1' K K
g; For the work of this section we take Y = §(A') with the graph norm
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2 2
Ivle = T a + 1% v %,
K

where -

:,a k=1
2

N in X. Then Y C X and the injection mapping is continuous ., It will
.-., often be possible to identify a Hilbert space 2 CX  with continuous injection
”.
%‘ map such that |] ﬂz is a familiar (e.g. Sobolev) normand Y is a
<3
.\ closed subspace of Z on which the noms | "Z and | "Y are
equivalent .
291 )
2?‘ We will be concerned with two different extensions of the operator A .
X

) We suppose first of all that there is an element ’): € X notin B(A) and
‘.j that L is an operatoron X such that

4 '

.-J - PaS
N 8(L) = {¢ tux | £ e 8(A), u scalar},
'. Ix = Ax, xe€ 8(4).
3 We willreferto L as an "operational extension" of A . Its significance
arises from the fact that many of the inhomogeneous boundary value problems
_J arising in applications can be expressed in the form
5!
N dx
£ & = x, (3.1
with the restriction

™ A .

N x=¢+uxe 8(L). (3.2)

The second extension of A, which is a map
i\.\ t X - Y ,
:E is a standard one, often used, e.g. in [14]. If y,Me 84), 8&@AY,
; respectively, we have
"‘

------
-----------------
-----------------
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(ay,n) = (y,a'm) .
Since A':Y= 9(A') —X is continuous, the form (y,A'n) extends
to (x A'n), xeX, by continuity and density of 8(A) in X and,
so extended, (x,A'M) defines, for each fixed x e X, a continuous

linear functionalon Y, i.e., anelementof Y . We define

R:xXx =Y = (s(A)y

(B, 1) =(x, AN, xeX, NeY=48@A").

Our first goal, with reference to the system (3.1), (3.2), is to replace

it by an infinite set of scalar ordinary differential equations

dxy
- = xkxk-l-bku, kek, (3.3)

where

x(= Y, x0 8,
kekK

convergent in X, In order to do this we recognize first of all that

z = ) Nx By
K
represents not Lx, but rather ?\x . since

B, 4p) = (%, A4 ) = (x, A 9 ) =% .

We rewrite (3.1) in the form

& = Rx +1x - Bx, (3.4)
an equation in Y . Then, since x 1is to have the form (3,2) with

€ € #A), and since

. ae e WL W LI S P PO G LGN S S T T TN T T N N S
ALY .‘\_.?- - o s-\} \,\ \.\-,\ “ _\ £ o dy ““ .(‘-‘ Y
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Lt =R = Az, ¢ e 8(A),

(3.4) becomes

%xi:_ = {A\x + (L;\c - 'XQ) u,
We define be Y, a continuous linear functionalon Y = g(A'),

(b,n) = (X -A%n) =(x 1) - (% A'n)
for N € 8(A')= Y.  We then have
b = Zbk $y
K
where the '"control input coefficients", bk , are given by

b

(b} = (IX, §) - (% AY)
(X, ) - N (%, 4 .

k

In most examples we shall have IQ =0, Then, if
e N
x =), 5y
K
convergent in X, we obtain, in place of (3.6),
N
bk = -Xk X k e K.,

Also, in this case, the equation (3.5) becomes

(b,n ) = -(x,A'n).

The equation (3.5) (or (3.8)) will generally be used to identify the

by
(3.5)

(3.6)

(3.7

(3. 8)

functional form of b while (3,6) (or (3.7)) will be used to identify its

expansion coefficients in terms of the eigenvectors "k of the operator A,

While not all admissible input elements can be treated this way the class is

large enough, we believe to warrant the detailed description we have given here.
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i Example 1: Heat Equation., Let x(s,t) satisfy
2
9X 9°x
22 = », 0 <s8<l, t>o0, 3.9
at Tagl (3.9)
with boundary conditions
x(0,t) = 0, ax(l,t)+B§§‘§-(1,t)=u(t), (3.10)
‘ where a,B are real numbers, not both equal to zero. In this case
;‘ we take
‘ X = 1%0,1]
“3: Ax=-i~s—’£, xe 8A) = {xe HY0,1]]| x(0)=0,
! ax H+Bx'(1) =0},
: 82x 2
' I.X=T-z-, Xe€ 0(L)={er[0,l]lx(0)=0},
2 :
h x(s 3.1
. 52-8%) @18 =o0. .10
N With
< 1 .
‘j (x,vy) =j(; x(s) y (s) ds
- we see that if X,y € §(A)
A l
2 (Ax, y) - (x,Ay) --{) (x"(s)y(s) - x(s) y"(s) ds
1 d '
Z = _{) s (X (8) ¥(s) - x(s)y'(s))ds = (since x(0) = y(0) = 0)
x' (Dy() - x()y' (1)
k e gxanyw -Gy ey, B £ o
3 WM+ Eym - xm+E Xanym, oo
b = 0
3‘,:
- N 4 oy AN AT A By ol AN S S AT T
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and we conclude A=A, In the first case of (3.11), a +B £ 0,

1%=0 andwehave, for Te 8(A) = 8(A)
1

(b,n) = -(%, A'n) = '01+B J sn'(s)ds
0
1 S 1 -1'(1) + n()
=a+B(-sfl(S)lo+n(S)|o)= TP
1
=nN(), B #£o
5 1) £

) R
'En(l)l Q # 0 .
Thus we have

5 BAO

1l

g (1)’
1, (3.12)
F6M, afo .

The two agree if neither @ nor B are zero because the lingar functional

& 5yt& M 1iszeoin (@) =Y inthis case.

The eigenvalues of A are xk = -cu]z‘ where, for k=1,2,3,...

@ sin (w,) +Puw, cosw,) =0 . (3.13)
Let
a
- > = sin Gk
'J a” + Wy
Buw
LS = COS ek

Jaz +52ui
and (3.13) becomes )

cos (wk- ek) = 0

so that
2k -1
wk"ek:( 2 ) » k=l’2:3:--0:
giving
. -o"- ey \,l - d..'q - *-c" - }-(- " 3 - -": --Q-;d*.!.v"\-'.; - ‘:J" J -.:‘. ._.'_:.’\-\- - .-
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"'i
b o
7 wy = (Zkz‘l ) * +sin”} =
5 Jaz+5zw§
.

1 _ o(l -

P It is easy to see that P 6(y) as &k so

. _ ,2k-1 1
’g w = )T +e(), BFoO, (3. 14)
' 2k - 1 ™
, = )r + 5 = kw , B=o0. (3. 15)
X/ “% 2 2

-

Defining

'y I

1 ,
2 2

v, = sin s) d
kT ) i)

JR

it is easily seen that in all cases the Vi are nonzero and

s,

lim Vi = L
k—-o NZ

Then the eigenfunctions

EPXAARL:

By (s) = "_lk sin(w, 5)

form an orthonormal basis for Lz[ 0,1] . It follows then that the coefficients

of the input distrdbution elements (3.12) are given by

| EARANS

1
ka s"n(")k)v B f o,

1 = (3. 16)
%ﬂ‘ bk Wy COS (wy)
; @ £ o
% e '
e We consider here the case B # 0, saving the analysis for B = 0o
b until later in this section. If B £ 0, formula (3.16) shows the by
4 ]
a» to be uniformly bounded . The complex numbers - Xk = “’i have the
:. property (from (3,14))
2k-1.2
% N = (B2 R 4 e1). (3.17)
7
»
v
i

> '.v‘.‘--->(\'-‘u"-
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k
BN asRe(z) s a +h 1is s(hl/z) and it follows that the measure p with
- -]

N r(-N) = |bk|Z . p({Re(z) = a} -kU . {-hk}) = 0 1s a Carleson measure.
A =

: E Thus the number of such -\ inany set - |Im(z) - 1| <h,

% Hence if B # 0 the boundary input (3.10) is admissible .
In this case the result is easily obtained without the Carleson measure

theorem; for, if the coefficients c, are square summableand T> 0,

- "kt - T 2Mt
z; by cp e 22[0,1] = stl:p{lbkl}jkéllcklz «/Z f )‘k

sszp{lbkl}jkzllcklzji _{,oez"ktdt =sup{|bk|}/z Ickl /;2;1 i <4

i\f = k=1 2N
n (3.18)
;: since sup {Ibk|} <=, and we conclude that the function sequence

L, k

NN =At
'f:f {bke xk}

in such a way that a simple argument of this type does not apply and the Carleson

is 12-convergent in Lz[o,T] . Our next example is chosen

X ;
o theorem is actually needed .
%
5‘0
: Example 2, Another Heat Conduction System . As a further example
4Q
"{ we ask the reader to consider the system shown in Figure 3.1,
y
oy

<.
.

e ;i;i',;\'.s':‘.'.';'
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Figure 3.1

The shaded horizontal bar, B, represents a layer of material, whose depth
will be assumed negligible, and whose heat conductivity, k, is small in
comparison to its specific heat R while the region € consisting of the
half strip

Q :0=xx=x1]1, z=<0,
is assumed filled with a material whose specific heat, r, is small by
comparison with its conductivity, K. The heat flow equations are thus




"T

%
™
aT 9 aT
W R%r= k &= - K=, (3.19)
ht ot axZ 9z
1'55 a7 2%t |, 8%«
22 R i ) . (3. 20)
3 ot 2 2
x ax 9z
205 together with boundary conditions
b
vy 3T 9
N Zwn=0, Favn=o (3. 21)
N
X wzt)=0, Laztn=g@Eun, (3.22)
.
1]
159 2% (x,z,t)= Um  T(x,zt)=0 (3.23)
o Lim z~-e
e Z —> -
- t(x,0,t) = T(x,t), O=x=1, (3. 24)
XX
o
oo The inhomogeneous boundary conditionalong x =1, z =0, represents
X
N the input heat flux . In (3.19), (3.21), T(x,t) is the temperature in
A the bar, T(x,2,t) the temperatuwre in Q .
j:; If we assume k,r veily s:adll hy comparison with R, K, we may,
!
as an idealization, feplacz 73,19} and ¢..20} by
g R Il .25
o ' 2 2 '
el 21 +2 1., (3. 26)
ax 9z

£

retaining the boundary conditions (3.21) - (3. 24) . We take as our basic

-4

state space

N

T={T=TEX)|Te¢ LZ[O.I]}-

S d 5 % -
P Enddxt

We define an operator A on 3 with domain
s() = H[o0;1]

Ve
- »
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asfollows, Given T e (@A), welet T = 1(xX,2) satisfy (3.26)
in Q@ together with

T(x,0)=T(x), O0=x=l, (3.27
and
% (0,z)=0, 3L (Lz)=0 (3. 28)
lm 2T(.,z)=0 1 L%[o,1]. (3. 29)
Um 1(-,z)=0 in HYJ0,1]. (3. 30)

z—.-o

From [14], for T ¢ Hl[o,l] we have Te¢ H3/2(0) . The trace
theorem ([1], [14]) then gives

£x(.,0) ¢ 1%[0,1],

and we define

3
AT=-§- = (-.0). (3. 31)
So doing, (3.25) becomes
T = AT (3. 32)

and (3,31) is subsumed in the definitionof A .

Lemma 3,1. The operator -A {is the positive square root of the Sturm-Liouville
ogrator

2 2
k% &%t
sT = -X&
RE  dx®

with

........................
------------

T
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o g e < -~
a w S BN . " o 4 '
R, IRl

el

8(T) = (T« H:[0,1]| S5 (0) = $& (1) = o} .

5
-

A Proof, ¥ We compute (-A)ZT for Te 8(T). Forsuch T the solution
2 of (3.27) - (3.30) € HY2(q). Ifwe let
e

g

e then

iy and

(-M%T = -KT (., 0)= £ 2T (. o)
2 2

&§ =-£;a'r(. 0):-.5_.dT
T R® ax? R dx®

a1 since T ¢ HS/ 2(n) together with (3.26) implies that

2 2 2
b 23,00+ 25 (-,00=0 i L%[0,1]

- 9x 0z

o The positivity of -A follows from the divergence theorem , If

D Te #(A) and 1= 1(x,2) 1is constructed as above, we have

j‘;f[( (x2)% + (22 (x,20?] axdz

ok
atatatetaal

«

= ffﬂv'r(x,z)ﬂzdxdz (V = gradient)
Q

g

*

[N e S F )

= y[div(r(x.z)vf(x.zn - v(x,z)a%7(x,v)] dx dz

(a2

‘-_’sl. -.

foo

= mplaciap) = (from (3.26))
ffdiv('r(x,z) Vi(x,z))dxdz = (using (3.27) - (3. 30))

)2

2 = f t(x,0) 2L (x,0) dx = (T, -AT) ,

\

|
Lo, 1] \
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This completes the proof .
Accordingly, A 1is self adjoint with eigenfunctions

fol¥) = 1, @ (x)= 2 cos(knx), k=1L23,...

and eigenvalues

- - _K =
XO-O, Lk—-R.kw, k=12,3....
Let w(x,z) be the solution of the following inhomogeneous

boundary value problem:

Hm w(x,z)=0,

Z ~a®

0=x=s1,.
We will assume that g (z) is such that the resulting w(x,z) € HZ(Q) .

In this case the inhomogeneous equation can be interpreted as
T = AT +bu
where b = b(x) 1is given by

b = -% 2 (x,0).

To compute the coefficients of the expansion

bx)=), b f &,
k=0

we note that since A 1is self adjoint, \pk(x) = ¢k(x) , and

1
b, = {) $, (%) b (x) dx .




Let q>k(x, z) be the solution of

2 2

3"y 3y
-—T+ =0 in Q
ax az2

with
0y (%,0) = 0, (x)

and homogeneous boundary conditions of the type (3.27) - (3

2 2
2 3 ]
Thern, with A" = — t—,
ax2 0z
2 2
0= [ log(x,z)a%wix z) - wix, 2) a0y (x, 2

di ) d ,Z) - w(x,2)
_{z v[¢k(x z) grad w (X, z) - w g

1 0
-R { $ (x) b (x) dx +L¢k(1,z)g(z)d

=

giving (cf. (3.35))
0
by = !‘%[. o (L2) g (2) dz .

Now it is easily checked thatfor k =1,2,3,...

O (%, 2) = (N2 cos knx)(exp(kwz))
so that

0, (1.2) = (-D*NZ exp (knz)
and thus

k 0
b, = .(;]l_ﬁi_z_ﬁ_ f exp(kﬂ»z)

ENAE N AP




...................

The Carleson measure theorem.can be used in a slightly different way

than that set forth in Corollary 2.5 to showthat if g e L2 (-=,0] then the

bk are square summable and b 1is, consequently an element of LZ[O, 1].

Writing = -z, g(-¢)=g(r), we seethat
kK .rs © ~
b = L 2L [Cexm(kme) Firae

Since the measure . assigning the value 1 to each of the points kw,
k=0,12,..., 1isclearly a Carleson measure, and since -L'—IIER\,-—Z_—IS-
changes only in sign, {bk} € 22
If g(z) 1is just bounded and measurable on -« <z =<0 we can
almost trivially obtain
b = o(F)
and the hk will be square summable ,

It is obviously possible to replace g (z) by distributions of various

types. Taking g(z) = 6(0) corresponds to a point heat source at the
comer x=1, 2z=0 and leadsto

b _(-)¥ VT K
k = R

(3. 36)

In our present example X = Lz[ 0,11, Y= g(A)= Hl[o,l] and
Y = H-l[o, 1] . The coefficients (3.36) may be recognized as those
corresponding to & ) (referring now to distributions along the x-axis).

Any measure p assigning to the points -kk = % kv  values
|bkl2 which are bounded evidently yields a Carleson measure and we conclude
that all of the above cases correspond to edmissible input elements . In this
case the argument represented by the inequalities (3.18) will not work

because the series Z =+ 2)‘1‘ ) is not summable in this example .,
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Example 3. Hyperbolic and Neutral Systems .

A wide variety of systems involving linear hyperbolic partial differential
equations in two independent variables X, t, or neutral functional equations
lead to systems of the form described at the beginning of this section, the

2-basis for the state

eigenvectors, ¢k , of A forming a uniform ¢
space X and the eigenvalues )'k confined to a vertical strip
a < Re(A)< B in the complex plane. It also usually tums out in these

cases that the number of H‘ in any rectangle
a < Re(M)< B, y<Im(\A)<5§
is less than or equal to M(5 - y), where M is a fixed positive number,

It {s evident that the measure (2.27), (2.28) 1is a Carleson measure in these

cases whenever the control input coefficients bk constitute a bounded set .

Example 4 . Linear Surface Waves . If the operator A is defined as

in (3,31) but, instead of the first order system (3. 32) we consider the second
order counterpart

E+Ar=0 (3.37)
we obtain the linearized equations for small amplitude waves on the surface
of an incompressible fluid . The theory is more fully developed in [16], [17],

[19]. With M =1¢, (3.37) 1is equivalent to the first order system

G‘):(-: :>(§>5 “(fcu) - (3. 38)

To obtain a topology corresponding to the energy of the system one defines

. R - et AR WY . 0 . ) R T T ST S N N S S e S T N
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-1
Iz i’ +(N,A7° M) , (3. 39)
u<“>" ¢ 1%[0,1] t2[0,1]
where
' 2 2 1
L5001 = {¢ ¢ 1.[o,1]|f0 L(x)dx =0} . (3. 40)
The restriction to Lg [o,1] corresponds to conservation of fluid volume,
On the domain

1
8o8) = {z ¢ HI0.1]| [ ¢(x) ax = 0}
the operator A 1is invertible . Rs eigenvalues are (cf. (3. 34))

kk='_§'k“9 k=1D2)3!°.' (3'41)
with the same eigenfunctions ¢k(x) , k=12,3,..., asshownin

(3. 33) . Correspondingly, the operator @ has eigenvalues

1/2
1wk, "'1‘l,k, ‘I)k— R k — Yk ? k-l,2,3,gooo

(3. 42)
and the eigenvectors, orthonormalized with respectto || ||, and the
corresponding inner product are

g ¢
"k=( k ’ q‘-k= k 4 k=l’213}00. .
iuk ¢k ‘ -imk ¢k

(3.43)

To discuss admissible input elements in this case we let B, , B_,

be non-negative numbers, k=123..., anddefine

b{logd =B, B {dod=B,, k=1273,...,

0.

k({Re(z) =a} - kL-)-l {1} U (~1e)}))




let B(w), -»< w < w, be defined as the piecewise linear function

such that in the interval [iw,, 1w, ,]

Pl gy - @) + By ylw-wy)

B((d) = . (3044)
“kH " %k
Since
B w248 . oV/2
{:"kﬂml/za( )deo = —KOK > k+ © k4l [0y - 0 ]
k
1

= TP +Py),  k—-,

we conclude that | 1is a Carleson measure just in case there is a constant

C such that

fTwl/.zﬁ(m)dm = C|vt - g (3. 45)
o

whenever 0 < o0 < 7, together with a comparable condition involving the
B-k and negative values of « . But (3,45) {is true just in case

1/2 4

wp

kscv k=1:213’o--

and the comparable condition for negative k is

1/2 _
Wy B—-k = C, k=123....

Thus for the inhomogeneous system

() <)) »

the input element (b )
2

et Y.t
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.....................
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Py by
<<1‘°k b ) b, “P
A by
<<-1"°k fr) b, "
is admissible, from this criterion, if
K28 |2 +18_ [5) < © (3. 46)

for some fixed positive number C . It will be noted that this is (slightly)
less restrictive than the requirement

< -

Example 5. = Negative Results. For any system similar to the one in

Example 4 but with l°k+1 - mkl =0 (l/kl/2 + e) the Carleson measure
condition will be stronger than requiring b € X, Hence failure of the
Carleson measure condition cannot be used to show that an element b is
not admissible, forany b e X 1s admissible.

To illustrate what can be done in a negative direction, we retum to

Examplel with B = 0. This situation has been studied, using a different
apprbach, in [13] . We present here an argument more in the spirit of the

present work. As shown in (3.15),

X.k= -wi = -kzﬂ’z

and (cf. (3.16) and, w.l,o.g. taking a =1)

(3.47)

oa4% |
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"By =NZ kn cos(kn) = (-1*NZ kn . (3. 48)
stnce By = [b|%= &%l while (k+1)?w?-x%n? = 2ka? 40P,
_ _ 2
it is not hard to see that the measure p = Fb’{’\k} T (-kk) = |bk| is

not a Carleson measure in this case . As we have remarked, this by itself
is not enough to show that the input element with coefficients (3.48) 1is not

admissible . To show this, we ask the reader to consider the function

$ (z)= (2 +1)7"
analytic in the complex plane minus the cut consisting of {z]|zreal, z = -1} .
¥ r > -12-. $, is square integrable on any vertical line {z|Re(2) =

2
€. €
Re(z) 2 0. Itfollows that x_(z) is the Laplace transform of a function

v

0} with uniformly bounded L° norm and { (z) is bounded for

- 2
f = fr(t) with fre L"[0,=). Then

2 2

@
e Tt £ (t)at

4

k
= (1R NT ke (kP?) = L2k
(k“w ™ +1)

= s(lkll'zr). | (3. 49)

This expression is not square summable if r satisfies the inequalities

1
1-2r z2-3,

80 we require

r =

wlw

1
-?:<

o..'\ll -------------
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i

" -k2 a2t

.-." Let E be the closed subspace spanned by the functions e in

4

S I.Z[o, ) and let ET , T>0, be the subspace of LZ[O,T]

%‘i consisting of restrictions to [0, T] of functionsin E. I ’f\r is

e* ] the orthogonal projection of fr onto E we clearly have

[- -] 2 2 -] 2 2
{) e f(t)dt = _{;e £ (t)at,

Itis shownin [7], [18] that the natural restricdion map R:E —Eq

is onto, (obviously) bounded and (not so obviously) boundedly invertible

o with respect to the induced Lz[o, ), Lz[o,'.l‘] topologies of E, E,
A 2.2
3;, respectively . Thus, with pk(t) = e"k v t,
<]
< @ 2
- -k wzt o o
e f(t)ydt = (f_,
5 - | =) *
% =(f ,R "R ) = ((R ) ,» Rp,. )
r pk LZ o.“) r pk Lz[O,T]
. T ,2 2
o = [kt gutyat
X 0
4 where
_ ol ®*o 2
¢,.=(R7) £ e Eq © L°[0,T].
o
[ It follows that @_.  1s an element of 12 [0,T] such that the numbers
G ' T .22
g (-D5NZkn [ &K T to mat, k=123, .-
S 0
W
s are not square summable . From earlier developments, the input element b

with coefficients (3,12) cormresponding to the boundary condition (3.10),
with B=0, a=1:

sice v

x(1,t) = u(t),

is not an admissible input element .

g

4
,4

------- o A

) .\. """ "1. LS S \.l“
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4, A Proof of Theorem 2.4. It is clear that the Carleson measure theorem

in Hza , Theorem 2.4, is central to our work in this paper, This result,
in one form or another has been known for somewhat more than a decade. A

proof for HZ(D) R where D is the unit disc in the complex plane,

-ss

appears inDuren [5] . A proof for functions in HL is given, by
Koosis in his recent book [12] . The reader is also referred to the recent

book [8] by J. Gamett. Because the result is not particularly well known

L S PRSP IRA N &

outside the circle of mathematicians working in HP theory and because the

y results are rather scattered and not readily available in precisely the form we

EPUL At

-
=

require, we offer here a proof of Theorem 2,4 which is a direct adaptation

b to the half plane of the result for the unit disc appearing in Duren's book .
S \ The p@f given here originally formed part of the first author's doctoral

" dissertation [9]. As in Duren's work, the proof makes use of a relatively
* simple case of the Marcinkiewicz interpolation theorem ([23], Chapter XI)
‘ and, again following Duren, we do not quote the general Marcinkiewicz
theorem but, rather, give a direct proof for the simple special case required
= here .,

=

;%‘ We begin with a covering lemma of "Vitali type'.

i3

.ﬁ' lemma 4.1, Let {leke A} = 3  be a family of intervals in Rl.
Suppose there is a positive number K such that for any finite collection
& ‘ {le , Ixz' . ... , I"n} of disjoinf intervals in J

n
kZl I | < K. (4.1)

.‘,;f r ! "
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Then we can choose a sequence {Ix | k=123,...} of disjoint intervals
k

from J with the property: for every M € A there exists

ke {1,2,3,...} such that
IXC ]'k

where ], 1is the interval having the same center as I,  but five times

k
the length of Ikk .

Proof. From (4.1) it follows, in particular, that the length, |Ix|, of
I, is uniformly bounded (take n =1, )‘l = N). Define the sequence

{1, } inductively as follows , Let I be such that
My M

1
I == sup |I,| .
I =z,508 Ih

For k=2,3,4,¢-- let Ix be disjoint from I)\ ,
k i

1= 1,2,"',!1—1,

and such that

|1kk|.>.-15 si([nl|re a1 nh =4, 1=Lzeckel 42)

Since the I Lk are disjoint it follows from (4.1) that

im |I, | =0. (4.3)
k

k—-ﬂ

Let Ix € Jd. Then there exists k such that
I, N ka;é P. (4. 4)

Otherwise (4.2) and (4.3) could not both be true. Let k be the

0
smallest integer such that (4. 4) is true . Then
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I, | = zllxk |
0
and, together with the fact that I, n I, # ¢, this implies that
k

I7L Cc Ik R completing the proof . 0

We subdivide the rest of the proof of Theorem 2,4 into several propositions
for clarity . The proof is given for the half plane Re(z)> 0, without

loss of generality, and we designate Hg simply by H2 .

Proposition 4, 2. let @ € H2 and let ;60(1 - ) be the corresponding

boundary function in LZ(-o,o). For z= o+tirT, g>0, let

I, be the interval

I, = [t- o, T+ 0] (4.5)
and let
1
g(z)= sup = (it)|dt, (4. 6)
125, T {10

where J is the set of all finite intervals containing Iz . Then

@] = 2 Bl (4.7

Proof. From the Poisson integral formula in the half plane we have

f°a¢o( it) dt

$l2) = - ¢ "
- +(t-~t)

so that
a o| @, (it)dt
|6(2)] = ‘;[ | ————
N=0 zNaslt--r|szN+lo 0" +(1-1)

+f a|¢o(1t)|dt:l

oz +(T- t)z

UCARR S ‘h"“‘\.-\‘.' " 0.\§' -’\
N A et let AL MO L)
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- | Bo(1t)]dt [ Bo(1t)] at
= %"F / N+l - DL J -
LN=0 j¢t_¢| =2V g o [t-t|=o 0
1 o 1
== ) SN2 g (z) +28(z)]
LN=0
=2 fe).
Proposition 4,3, let e Ll(-e,o) and, for z=o0+irT,
g >0, let Iz be given by (4.5) while (cf. (4.6))
-~ 1
Y(z)= sup T [ ¢ (t)]dt . (4. 8)
Ie Jz |1l

let E  be the Borel

0
measurable subset of {z | Re(z) > 0} given by

Then, with A  as in Definition 2.3,

Proof. let J be the family of all finite intervals in R' such that

Thus 4 satisfles the hypotheses of Lemma 4.1 and we can find a disjoint

E_={z|Re(z)>0, {(2)>s}.

R(E) = 32 "*"Ll(., o (4.9)

1
'I_I_Ifl ety |dt > s, (4.10)
it Il’ Iz, ---,In € Jd are disjoint, then (4.10) gives, forevery n,
n n
1 1
YoInl=3 7 lveldt =< 5 lel , . (4.11)
k=1 k=1 L(-=,=)

sequence {Inl n=123,...} 3 suchthat, J, having the same

--------------------------
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some ]’n .
¥

some n,

Then clearly,

but five times the length, each I ¢ J is contained in

ze E, then I CI forsome 1Ie¢ 8 and we have, for

S FA

Iz=[—r-o,'r + o] CIn.

[T |
zeSn={o+1'r|0< o= zn , 'reIn}.

This being true forall z ¢ E s ?

Since p

Proposition 4.4. Llet £ e HZ
Let  #(z)

is a Carleson measure and (4.11) holds,

BE) = ) m(S))=A ) —F
n=1 n=1
5A T A
=3 ¥ oIyl =33 i, :
n:l L(-QDQ)

be defined by (4.6). Then, if p is a Carleson measure on

0 with boundary function ;60(1 + ) e Lz(-w. =) |

{z|Re(z) >0},

Proof.

ée (B(2))2 dp(z) =10Af |B01t)|% at .
(z) >0 -

Foreach r > 0 let
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golit) i [Fo(it)| > r

b (t) =
0 otherwise .

From ¢0 (i) € L2 (-=, ®), we conclude that the support of l.[Jr isa
subset Zr of (-«,o) of finite (Lebesgue) measure. Then

¢r € LZ( Zr) C Ll( Zr) and we conclude, since q;r vanishes outside
Zr , that q;r € Ll(-cn, ®). Moreover

dr = it)|dt d
[y = £ oo
w |8t ®
=f{) dr|dy (1) dt = [ |4, (1t)]% at (4.13)
2
= 1') .
ot

Let «af(s) = p.(Es) . Then we can see that
L. Benian = -["Pdae = 2f sa(sds. (4.19)
(z)>0 0 0

From the definition (4.8) of § it is clear that for any two such
functions, "‘1' v.pz , we have
(b + ¥y)(2) = §y(z) + §,(2).
Hence
Blz) = (4, + (Fy(1+) -4 ) (2)

= .2 + (B (TT0) @ (4.15)

= &'r(z) +r




since [ (it) - ¢ (t)] is eitherequalto 0 oris
F = {z| ¥ (2)>s}.
‘: Suppose z ek, . Then @(z) > 2r and {4.15) ai
- L'Fr(z) > Z(z) -r>r
o and we conclude z ¢ F.. Thus
E, CF_.

2r r

Hence, from (4.9) of Proposition 4. 3,

[
-
"

’
Paet

B(E) = k(F ) = 2% by

- ;

so that

v

Ly
JJ

_{)ra(r)dr:fo rr(E.) dr

e
i

)
Fa i
Suls

: = 5A dr =< (using (4.13)
. fo (KA oy

—w, @)

= sall (1)l ( :

—G’ . -] )
Then (4.14) gives the inequality (4.12) .
The proof of Theorem 2.4 1is completed by combining

Proposition 4.2 with (4.12) above to give

¥ [ @ e =13 (F (2% dr(2)
e(z)>0 T e(z)>0

1000A °* 2
= = j-'°|¢0(1t)| dt

Catefal el

! "..
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as claimed in (2. 26), except for the trivial detail of replacing ¢0(1 -)
by g, ,=8(a+i-).
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